Gotowa bibliografia na temat „Topologically-ordered phases”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Topologically-ordered phases”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Topologically-ordered phases"
Lee, In-Hwan, Hoang-Anh Le i S. R. Eric Yang. "Mutual Information and Correlations across Topological Phase Transitions in Topologically Ordered Graphene Zigzag Nanoribbons". Entropy 25, nr 10 (15.10.2023): 1449. http://dx.doi.org/10.3390/e25101449.
Pełny tekst źródłaHussien, Musa A. M., i Aniekan Magnus Ukpong. "Electrodynamics of Topologically Ordered Quantum Phases in Dirac Materials". Nanomaterials 11, nr 11 (30.10.2021): 2914. http://dx.doi.org/10.3390/nano11112914.
Pełny tekst źródłaGROVER, TARUN. "ENTANGLEMENT ENTROPY AND STRONGLY CORRELATED TOPOLOGICAL MATTER". Modern Physics Letters A 28, nr 05 (6.02.2013): 1330001. http://dx.doi.org/10.1142/s0217732313300012.
Pełny tekst źródłaSpanton, Eric M., Alexander A. Zibrov, Haoxin Zhou, Takashi Taniguchi, Kenji Watanabe, Michael P. Zaletel i Andrea F. Young. "Observation of fractional Chern insulators in a van der Waals heterostructure". Science 360, nr 6384 (1.03.2018): 62–66. http://dx.doi.org/10.1126/science.aan8458.
Pełny tekst źródłaDaniel, Austin K., Rafael N. Alexander i Akimasa Miyake. "Computational universality of symmetry-protected topologically ordered cluster phases on 2D Archimedean lattices". Quantum 4 (10.02.2020): 228. http://dx.doi.org/10.22331/q-2020-02-10-228.
Pełny tekst źródłaJacobsen, Brad, Karl Saunders, Leo Radzihovsky i John Toner. "Two New Topologically Ordered Glass Phases of Smectics Confined in Anisotropic Random Media". Physical Review Letters 83, nr 7 (16.08.1999): 1363–66. http://dx.doi.org/10.1103/physrevlett.83.1363.
Pełny tekst źródłaSaunders, Karl, Brad Jacobsen, Leo Radzihovsky i John Toner. "Topologically ordered phases of smectics confined in anisotropic random media: smectic Bragg glasses". Journal of Physics: Condensed Matter 12, nr 8A (17.02.2000): A215—A220. http://dx.doi.org/10.1088/0953-8984/12/8a/326.
Pełny tekst źródłaOreg, Yuval, i Felix von Oppen. "Majorana Zero Modes in Networks of Cooper-Pair Boxes: Topologically Ordered States and Topological Quantum Computation". Annual Review of Condensed Matter Physics 11, nr 1 (10.03.2020): 397–420. http://dx.doi.org/10.1146/annurev-conmatphys-031218-013618.
Pełny tekst źródłaWen, Xiao-Gang. "A theory of 2+1D bosonic topological orders". National Science Review 3, nr 1 (24.11.2015): 68–106. http://dx.doi.org/10.1093/nsr/nwv077.
Pełny tekst źródłaWen, Xiao-Gang. "Topological Order: From Long-Range Entangled Quantum Matter to a Unified Origin of Light and Electrons". ISRN Condensed Matter Physics 2013 (27.03.2013): 1–20. http://dx.doi.org/10.1155/2013/198710.
Pełny tekst źródłaRozprawy doktorskie na temat "Topologically-ordered phases"
Karlsson, Eilind. "Kitaev models for topologically ordered phases of matter". Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-62814.
Pełny tekst źródłaRitz-Zwilling, Anna. "Topological order at finite temperature in string-net and quantum double models". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS268.
Pełny tekst źródłaTopological order is a special kind of quantum order which appears in strongly interacting gappedquantum systems and does not admit a description by a local order parameter and spontaneous symmetry breaking. In two dimensions and at zero temperature, it is instead characterized by a ground-state degeneracy dependent on the manifold topology, long-range entanglement, and the presence of quasiparticles with fractional quantum numbers and exchange statistics (also called anyons). This thesis investigates topological order at finite temperature by means of two exactly-solvable toy models: the string-net model of Levin and Wen and the Kitaev quantum double model. The main focus is on the string-net model, which realizes all achiral doubled topological orders, i.e., all topological orders described by Drinfeld centers. This model takes a unitary fusion category as aninput, and produces the corresponding Drinfeld center as an output. First, we derive a formula forthe spectral degeneracies that depend on both the topology, and the topological order considered. In particular, the degeneracies depend not only on the Drinfeld center but also on theinput category. Next, we compute the partition function, from which we obtain the entropy, specific heat, and show that there is no finite-temperature phase transition. We identify a particular set of objects of the Drinfeld center, called pure fluxons, which drive the partition function in the thermodynamic limit, and study their properties. We also obtain the thermal averages of closed string operators, and study the mutual information. Finally, we carry over our approach to the quantum double models, where we also derive a general formula for the spectral degeneracies, partition function and entanglement entropy, allowing for a more general and detailed study of finite-temperature properties compared to previous studies
Części książek na temat "Topologically-ordered phases"
"Geometric Berry Phase and Chern Number". W Topologically Ordered Zigzag Nanoribbon, 21–50. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811261909_0002.
Pełny tekst źródła"Matrix Product States and Disordered Anyon Phase". W Topologically Ordered Zigzag Nanoribbon, 487–511. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811261909_0021.
Pełny tekst źródła"Anomalous Velocity, Polarization, Zak Phase, and Chern Number". W Topologically Ordered Zigzag Nanoribbon, 109–31. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811261909_0005.
Pełny tekst źródłaSimon, Steven H. "Robustness of Topologically Ordered Matter". W Topological Quantum, 407–18. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780198886723.003.0029.
Pełny tekst źródłaStreszczenia konferencji na temat "Topologically-ordered phases"
Seepersad, Carolyn Conner, Janet K. Allen, David L. McDowell i Farrokh Mistree. "Robust Design of Cellular Materials With Topological and Dimensional Imperfections". W ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85061.
Pełny tekst źródła