Artykuły w czasopismach na temat „Tissue engineering polymer cell culture scaffold hydrophobic”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Tissue engineering polymer cell culture scaffold hydrophobic”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Yong, Hsin Nam Ernest, Kim Yeow Tshai i Siew Shee Lim. "Aqueous Stability of Cross-Linked Thermal Responsive Tissue Engineering Scaffold Produced by Electrospinning Technique". Key Engineering Materials 897 (17.08.2021): 39–44. http://dx.doi.org/10.4028/www.scientific.net/kem.897.39.
Pełny tekst źródłaJeznach, Oliwia, Dorota Kołbuk, Tobias Reich i Paweł Sajkiewicz. "Immobilization of Gelatin on Fibers for Tissue Engineering Applications: A Comparative Study of Three Aliphatic Polyesters". Polymers 14, nr 19 (4.10.2022): 4154. http://dx.doi.org/10.3390/polym14194154.
Pełny tekst źródłaPhuegyod, Seubsakul, Sasivimon Pramual, Nungnit Wattanavichean, Supasuda Assawajaruwan, Taweechai Amornsakchai, Panithi Sukho, Jisnuson Svasti, Rudee Surarit i Nuttawee Niamsiri. "Microbial Poly(hydroxybutyrate-co-hydroxyvalerate) Scaffold for Periodontal Tissue Engineering". Polymers 15, nr 4 (9.02.2023): 855. http://dx.doi.org/10.3390/polym15040855.
Pełny tekst źródłaLis-Bartos, Anna, Agnieszka Smieszek, Kinga Frańczyk i Krzysztof Marycz. "Fabrication, Characterization, and Cytotoxicity of Thermoplastic Polyurethane/Poly(lactic acid) Material Using Human Adipose Derived Mesenchymal Stromal Stem Cells (hASCs)". Polymers 10, nr 10 (28.09.2018): 1073. http://dx.doi.org/10.3390/polym10101073.
Pełny tekst źródłaChee, Tan Yong, Abdull Rahim Mohd Yusoff i Nik Ahmad Nizam Nik Malek. "Characterisation of poly(vinyl alcohol)- polycaprolactone hybridized scaffold for potential skin tissue regeneration". Malaysian Journal of Fundamental and Applied Sciences 16, nr 1 (2.02.2020): 6–9. http://dx.doi.org/10.11113/mjfas.v16n1.1469.
Pełny tekst źródłaCho, Kwang Joon, Dae Keun Song, Se Heang Oh, Young Joo Koh, Sahng Hoon Lee, Myung Chul Lee i Jin Ho Lee. "Fabrication and Characterization of Hydrophilized Polydioxanone Scaffolds for Tissue Engineering Applications". Key Engineering Materials 342-343 (lipiec 2007): 289–92. http://dx.doi.org/10.4028/www.scientific.net/kem.342-343.289.
Pełny tekst źródłaLim, Mim Mim, Tao Sun i Naznin Sultana. "In VitroBiological Evaluation of Electrospun Polycaprolactone/Gelatine Nanofibrous Scaffold for Tissue Engineering". Journal of Nanomaterials 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/303426.
Pełny tekst źródłaGhaedamini, Sho'leh, Saeed Karbasi, Batool Hashemibeni, Ali Honarvar i Abbasali Rabiei. "PCL/Agarose 3D-printed scaffold for tissue engineering applications: fabrication, characterization, and cellular activities". Research in Pharmaceutical Sciences 18, nr 5 (2023): 566–79. http://dx.doi.org/10.4103/1735-5362.383711.
Pełny tekst źródłaYang, Joseph, Masayuki Yamato i Teruo Okano. "Cell-Sheet Engineering Using Intelligent Surfaces". MRS Bulletin 30, nr 3 (marzec 2005): 189–93. http://dx.doi.org/10.1557/mrs2005.51.
Pełny tekst źródłaPacilio, Serafina, Roberta Costa, Valentina Papa, Maria Teresa Rodia, Carlo Gotti, Giorgia Pagnotta, Giovanna Cenacchi i Maria Letizia Focarete. "Electrospun Poly(L-lactide-co-ε-caprolactone) Scaffold Potentiates C2C12 Myoblast Bioactivity and Acts as a Stimulus for Cell Commitment in Skeletal Muscle Myogenesis". Bioengineering 10, nr 2 (11.02.2023): 239. http://dx.doi.org/10.3390/bioengineering10020239.
Pełny tekst źródłaDong, Yixiang, Thomas Yong, Susan Liao, Casey K. Chan i S. Ramakrishna. "Long-term viability of coronary artery smooth muscle cells on poly( l -lactide- co -ϵ-caprolactone) nanofibrous scaffold indicates its potential for blood vessel tissue engineering". Journal of The Royal Society Interface 5, nr 26 (19.02.2008): 1109–18. http://dx.doi.org/10.1098/rsif.2007.1354.
Pełny tekst źródłaZhao, Min Li, Gang Sui, Xu Liang Deng, Ji Gui Lu, Seung Kon Ryu i Xiao Ping Yang. "PLLA/HA Electrospin Hybrid Nanofiber Scaffolds: Morphology, In Vitro Degradation and Cell Culture Potential". Advanced Materials Research 11-12 (luty 2006): 243–46. http://dx.doi.org/10.4028/www.scientific.net/amr.11-12.243.
Pełny tekst źródłaMeng, Di, Xiongxin Lei, Yang Li, Yingjun Kong, Dawei Huang i Guifeng Zhang. "Three dimensional polyvinyl alcohol scaffolds modified with collagen for HepG2 cell culture". Journal of Biomaterials Applications 35, nr 4-5 (24.06.2020): 459–70. http://dx.doi.org/10.1177/0885328220933505.
Pełny tekst źródłaFan, Daniel, Urs Staufer i Angelo Accardo. "Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications". Bioengineering 6, nr 4 (13.12.2019): 113. http://dx.doi.org/10.3390/bioengineering6040113.
Pełny tekst źródłaHahn, Judith, Gundula Schulze-Tanzil, Michaela Schröpfer, Michael Meyer, Clemens Gögele, Mariann Hoyer, Axel Spickenheuer, Gert Heinrich i Annette Breier. "Viscoelastic Behavior of Embroidered Scaffolds for ACL Tissue Engineering Made of PLA and P(LA-CL) After In Vitro Degradation". International Journal of Molecular Sciences 20, nr 18 (19.09.2019): 4655. http://dx.doi.org/10.3390/ijms20184655.
Pełny tekst źródłaLiu, Zheng, i Jun Wang. "Biological Influence of Nonswelling Microgels on Cartilage Induction of Mouse Adipose-Derived Stem Cells". BioMed Research International 2019 (13.10.2019): 1–10. http://dx.doi.org/10.1155/2019/6508094.
Pełny tekst źródłaNiemczyk-Soczynska, Beata, Arkadiusz Gradys i Pawel Sajkiewicz. "Hydrophilic Surface Functionalization of Electrospun Nanofibrous Scaffolds in Tissue Engineering". Polymers 12, nr 11 (10.11.2020): 2636. http://dx.doi.org/10.3390/polym12112636.
Pełny tekst źródłaTsai, Wei-Bor, i Ibrahim Nasser Ahmed. "The Impact of Polyethylene Glycol-Modified Chitosan Scaffolds on the Proliferation and Differentiation of Osteoblasts". International Journal of Biomaterials 2023 (3.01.2023): 1–8. http://dx.doi.org/10.1155/2023/4864492.
Pełny tekst źródłaPazhanimala, Shaleena K., Driton Vllasaliu i Bahijja T. Raimi-Abraham. "Engineering Biomimetic Gelatin Based Nanostructures as Synthetic Substrates for Cell Culture". Applied Sciences 9, nr 8 (17.04.2019): 1583. http://dx.doi.org/10.3390/app9081583.
Pełny tekst źródłaPangesty, Azizah Intan, i Mitsugu Todo. "Improvement of Mechanical Strength of Tissue Engineering Scaffold Due to the Temperature Control of Polymer Blend Solution". Journal of Functional Biomaterials 12, nr 3 (14.08.2021): 47. http://dx.doi.org/10.3390/jfb12030047.
Pełny tekst źródłaKhoramgah, Maryam Sadat, Javad Ranjbari, Hojjat-Allah Abbaszadeh, Fatemeh Sadat Tabatabaei Mirakabad, Shadie Hatami, Simzar Hosseinzadeh i Hossein Ghanbarian. "Freeze-dried multiscale porous nanofibrous three dimensional scaffolds for bone regenerations". BioImpacts 10, nr 2 (8.02.2020): 73–85. http://dx.doi.org/10.34172/bi.2020.10.
Pełny tekst źródłaWANG, LU, YANNI CHEN, JUN QIAN, YANYAN TAN, SHAOHUA HUANGFU, YIJIANG DING, SHUQING DING i BIN JIANG. "A BOTTOM-UP METHOD TO BUILD 3D SCAFFOLDS WITH PREDEFINED VASCULAR NETWORK". Journal of Mechanics in Medicine and Biology 13, nr 05 (październik 2013): 1340008. http://dx.doi.org/10.1142/s0219519413400083.
Pełny tekst źródłaGarcía-Cerna, Sandra, Uriel Sánchez-Pacheco, Angélica Meneses-Acosta, José Rojas-García, Bernardo Campillo-Illanes, Daniel Segura-González i Carlos Peña-Malacara. "Evaluation of Poly-3-Hydroxybutyrate (P3HB) Scaffolds Used for Epidermal Cells Growth as Potential Biomatrix". Polymers 14, nr 19 (26.09.2022): 4021. http://dx.doi.org/10.3390/polym14194021.
Pełny tekst źródłaIwanaga, Shintaroh, Yuta Hamada, Yoshinari Tsukamoto, Kenichi Arai, Taketoshi Kurooka, Shinji Sakai i Makoto Nakamura. "Design and Fabrication of Mature Engineered Pre-Cardiac Tissue Utilizing 3D Bioprinting Technology and Enzymatically Crosslinking Hydrogel". Materials 15, nr 22 (9.11.2022): 7928. http://dx.doi.org/10.3390/ma15227928.
Pełny tekst źródłaMaibohm, Christian, Alberto Saldana-Lopez, Oscar F. Silvestre i Jana B. Nieder. "3D Polymer Architectures for the Identification of Optimal Dimensions for Cellular Growth of 3D Cellular Models". Polymers 14, nr 19 (4.10.2022): 4168. http://dx.doi.org/10.3390/polym14194168.
Pełny tekst źródłaGhasemi, Sanaz, i Hamed Ghomi. "Investigation of applying chitosan coating on antibacterial and biocompatibility properties of bredigite/titanium dioxide composite scaffolds". Journal of Biomaterials Applications 36, nr 3 (16.02.2021): 406–18. http://dx.doi.org/10.1177/0885328221994290.
Pełny tekst źródłaRodrigues, Leonardo Ribeiro, Cecília Amélia de Carvalho Zavaglia i Christiane Bertachini Lombello. "HA/TCP Scaffolds Coated by PLA and Gelatin: Preliminary In Vitro Evaluation". Key Engineering Materials 631 (listopad 2014): 289–94. http://dx.doi.org/10.4028/www.scientific.net/kem.631.289.
Pełny tekst źródłaChoi, Dong Jin, Kyoung Choi, Sang Jun Park, Young-Jin Kim, Seok Chung i Chun-Ho Kim. "Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering". International Journal of Molecular Sciences 22, nr 21 (27.10.2021): 11600. http://dx.doi.org/10.3390/ijms222111600.
Pełny tekst źródłaNakashima, Yoshiki, Hiroki Iguchi, Kenta Takakura, Yuta Nakamura, Kenji Izumi, Naoya Koba, Satoshi Haneda i Masayoshi Tsukahara. "Adhesion Characteristics of Human Pancreatic Islets, Duct Epithelial Cells, and Acinar Cells to a Polymer Scaffold". Cell Transplantation 31 (styczeń 2022): 096368972211205. http://dx.doi.org/10.1177/09636897221120500.
Pełny tekst źródłaRode, Michele Patricia, Addeli Bez Batti Angulski, Felipe Azevedo Gomes, Maiara Marques da Silva, Talita da Silva Jeremias, Rafael Guzella de Carvalho, Daniel Gonçalves Iucif Vieira i in. "Carrageenan hydrogel as a scaffold for skin-derived multipotent stromal cells delivery". Journal of Biomaterials Applications 33, nr 3 (wrzesień 2018): 422–34. http://dx.doi.org/10.1177/0885328218795569.
Pełny tekst źródłaMousavi, Seyyed Mojtaba, Seyyed Alireza Hashemi, Masoomeh Yari Kalashgrani, Navid Omidifar, Sonia Bahrani, Neralla Vijayakameswara Rao, Aziz Babapoor, Ahmad Gholami i Wei-Hung Chiang. "Bioactive Graphene Quantum Dots Based Polymer Composite for Biomedical Applications". Polymers 14, nr 3 (5.02.2022): 617. http://dx.doi.org/10.3390/polym14030617.
Pełny tekst źródłaChung, Johnson H. Y., Sepidar Sayyar i Gordon G. Wallace. "Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting". Polymers 14, nr 2 (13.01.2022): 319. http://dx.doi.org/10.3390/polym14020319.
Pełny tekst źródłaMouchati, Abdullah, i Najet Yagoubi. "Mechanical Performance and Cytotoxicity of an Alginate/Polyacrylamide Bipolymer Network Developed for Medical Applications". Materials 16, nr 5 (22.02.2023): 1789. http://dx.doi.org/10.3390/ma16051789.
Pełny tekst źródłaHashemi, Seyedeh-Sara, Seyedeh-Somayeh Rajabi, Reza Mahmoudi, Amir Ghanbari, Kazem Zibara i Mehrzad Jafari Barmak. "Polyurethane/chitosan/hyaluronic acid scaffolds: providing an optimum environment for fibroblast growth". Journal of Wound Care 29, nr 10 (2.10.2020): 586–96. http://dx.doi.org/10.12968/jowc.2020.29.10.586.
Pełny tekst źródłaCarvalho, Estela O., Clarisse Ribeiro, Daniela M. Correia, Gabriela Botelho i Senentxu Lanceros-Mendez. "Biodegradable Hydrogels Loaded with Magnetically Responsive Microspheres as 2D and 3D Scaffolds". Nanomaterials 10, nr 12 (3.12.2020): 2421. http://dx.doi.org/10.3390/nano10122421.
Pełny tekst źródłaGuo, Yongjian, Rouba Ghobeira, Sheida Aliakbarshirazi, Rino Morent i Nathalie De Geyter. "Polylactic Acid/Polyaniline Nanofibers Subjected to Pre- and Post-Electrospinning Plasma Treatments for Refined Scaffold-Based Nerve Tissue Engineering Applications". Polymers 15, nr 1 (24.12.2022): 72. http://dx.doi.org/10.3390/polym15010072.
Pełny tekst źródłaGögele, Clemens, Silvana Müller, Svetlana Belov, Andreas Pradel, Sven Wiltzsch, Armin Lenhart, Markus Hornfeck i in. "Biodegradable Poly(D-L-lactide-co-glycolide) (PLGA)-Infiltrated Bioactive Glass (CAR12N) Scaffolds Maintain Mesenchymal Stem Cell Chondrogenesis for Cartilage Tissue Engineering". Cells 11, nr 9 (7.05.2022): 1577. http://dx.doi.org/10.3390/cells11091577.
Pełny tekst źródłaMaibohm, Christian, Alberto Saldana-Lopez, Oscar F. Silvestre i Jana B. Nieder. "3D Polymer Structures for the Identification of Optimal Dimensions for Cellular Growth for 3D Lung Alveolar Models". Engineering Proceedings 4, nr 1 (16.04.2021): 33. http://dx.doi.org/10.3390/micromachines2021-09596.
Pełny tekst źródłaGarcia-Sanchez, Mayra Elizabeth, Ines Jimenez Palomar, Yolanda Gonzalez-Garcia i Jorge R. Robledo-Ortiz. "Bacterial Cellulose Produced by Gluconacetobacter xylinus Culture Using Complex Carbon Sources for Biomedical Applications". MRS Advances 1, nr 36 (2016): 2563–67. http://dx.doi.org/10.1557/adv.2016.462.
Pełny tekst źródłaLee, Dongjin, i Chaenyung Cha. "The Combined Effects of Co-Culture and Substrate Mechanics on 3D Tumor Spheroid Formation within Microgels Prepared via Flow-Focusing Microfluidic Fabrication". Pharmaceutics 10, nr 4 (13.11.2018): 229. http://dx.doi.org/10.3390/pharmaceutics10040229.
Pełny tekst źródłaChing, Kuan Yong, Orestis Andriotis, Bram Sengers i Martin Stolz. "Genipin crosslinked chitosan/PEO nanofibrous scaffolds exhibiting an improved microenvironment for the regeneration of articular cartilage". Journal of Biomaterials Applications 36, nr 3 (17.03.2021): 503–16. http://dx.doi.org/10.1177/08853282211002015.
Pełny tekst źródłaDimida, Simona, Amilcare Barca, Nadia Cancelli, Vincenzo De Benedictis, Maria Grazia Raucci i Christian Demitri. "Effects of Genipin Concentration on Cross-Linked Chitosan Scaffolds for Bone Tissue Engineering: Structural Characterization and Evidence of Biocompatibility Features". International Journal of Polymer Science 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/8410750.
Pełny tekst źródłaPeng, Yi-Yang, Qiuli Cheng, Meng Wu, Wenda Wang, Jianyang Zhao, Diana Diaz-Dussan, Michelle McKay, Hongbo Zeng, Sarute Ummartyotin i Ravin Narain. "Highly Stretchable, Self-Healing, Injectable and pH Responsive Hydrogel from Multiple Hydrogen Bonding and Boron-Carbohydrate Interactions". Gels 9, nr 9 (1.09.2023): 709. http://dx.doi.org/10.3390/gels9090709.
Pełny tekst źródłaHiga, Camila Fernandes, Thatyanne Gradowski, Selene Elifio-Esposito, Marcelo Fernandes de Oliveira, Paulo Inforçatti, Jorge Vicente Lopes da Silva, Fred Lacerda Amorim i Michelle Sostag Meruvia. "Influence of selective laser sintering process parameters on microstructure and physicochemical properties of poly(vinyl alcohol) for the production of scaffolds". Rapid Prototyping Journal 26, nr 6 (10.06.2020): 1155–64. http://dx.doi.org/10.1108/rpj-01-2019-0021.
Pełny tekst źródłaCareta, Oriol, Asier Salicio-Paz, Eva Pellicer, Elena Ibáñez, Jordina Fornell, Eva García-Lecina, Jordi Sort i Carme Nogués. "Electroless Palladium-Coated Polymer Scaffolds for Electrical Stimulation of Osteoblast-Like Saos-2 Cells". International Journal of Molecular Sciences 22, nr 2 (7.01.2021): 528. http://dx.doi.org/10.3390/ijms22020528.
Pełny tekst źródłaCareta, Oriol, Asier Salicio-Paz, Eva Pellicer, Elena Ibáñez, Jordina Fornell, Eva García-Lecina, Jordi Sort i Carme Nogués. "Electroless Palladium-Coated Polymer Scaffolds for Electrical Stimulation of Osteoblast-Like Saos-2 Cells". International Journal of Molecular Sciences 22, nr 2 (7.01.2021): 528. http://dx.doi.org/10.3390/ijms22020528.
Pełny tekst źródłaGuarino, Vincenzo, Francesco Urciuolo, Marco A. Alvarez-Perez, Benedetto Mele, Paolo A. Netti i Luigi Ambrosio. "Osteogenic differentiation and mineralization in fibre-reinforced tubular scaffolds: theoretical study and experimental evidences". Journal of The Royal Society Interface 9, nr 74 (7.03.2012): 2201–12. http://dx.doi.org/10.1098/rsif.2011.0913.
Pełny tekst źródłaKunz, Regina Inês, Rose Meire Costa Brancalhão, Lucinéia de Fátima Chasko Ribeiro i Maria Raquel Marçal Natali. "Silkworm Sericin: Properties and Biomedical Applications". BioMed Research International 2016 (2016): 1–19. http://dx.doi.org/10.1155/2016/8175701.
Pełny tekst źródłaGrigoriev, A. M., Yu B. Basok, A. D. Kirillova, V. A. Surguchenko, N. P. Shmerko, V. K. Kulakova, R. V. Ivanov, V. I. Lozinsky, A. M. Subbot i V. I. Sevastianov. "Cryogenically structured gelatin-based hydrogel as a resorbable macroporous matrix for biomedical technologies". Russian Journal of Transplantology and Artificial Organs 24, nr 2 (13.05.2022): 83–93. http://dx.doi.org/10.15825/1995-1191-2022-2-83-93.
Pełny tekst źródłaZaman, Zara. "Exploring Bone Cell Research Using Bone-on-a-Chip Models and Microfluidics: A Literature Review". Undergraduate Research in Natural and Clinical Science and Technology (URNCST) Journal 7, nr 6 (12.06.2023): 1–7. http://dx.doi.org/10.26685/urncst.477.
Pełny tekst źródła