Gotowa bibliografia na temat „TiO2–CdS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „TiO2–CdS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "TiO2–CdS"
Du, Yi-en, Xianjun Niu, Xinru He, Kai Hou, Huiling Liu i Caifeng Zhang. "Synthesis and Photocatalytic Activity of TiO2/CdS Nanocomposites with Co-Exposed Anatase Highly Reactive Facets". Molecules 26, nr 19 (4.10.2021): 6031. http://dx.doi.org/10.3390/molecules26196031.
Pełny tekst źródłaLavand, Atul B., Yuvraj S. Malghe i Suraj H. Singh. "Synthesis, Characterization, and Investigation of Visible Light Photocatalytic Activity of C Doped TiO2/CdS Core-Shell Nanocomposite". Indian Journal of Materials Science 2015 (5.10.2015): 1–9. http://dx.doi.org/10.1155/2015/690568.
Pełny tekst źródłaZou, Zhijun, Zhongli Qu, Longtao Tang, Yang Qiu, Gaohua Liao, Chang Li, Fen Li i Jiayou Tao. "UV Light Activated Multi-Cycle Photoelectric Properties of TiO2 and CdS/TiO 2 Films in Formaldehyde". Journal of Nanoscience and Nanotechnology 21, nr 11 (1.11.2021): 5642–47. http://dx.doi.org/10.1166/jnn.2021.19465.
Pełny tekst źródłaSong, Fengyan, Hao Sun, Hailong Ma i Hui Gao. "Porous TiO2/Carbon Dot Nanoflowers with Enhanced Surface Areas for Improving Photocatalytic Activity". Nanomaterials 12, nr 15 (23.07.2022): 2536. http://dx.doi.org/10.3390/nano12152536.
Pełny tekst źródłaFangyan Chen, Fangyan Chen, Yiming Liu Yiming Liu, Xi Zhang Xi Zhang i Lina He and Yubin Tang Lina He and Yubin Tang. "Inorganic-Framework Molecularly Imprinted CdS/TiO2 for Selectively Photocatalytic Degradation of Di (2-ethylhexyl) phthalate". Journal of the chemical society of pakistan 41, nr 2 (2019): 308. http://dx.doi.org/10.52568/000737/jcsp/41.02.2019.
Pełny tekst źródłaLi, Dongping, Zeheng Chen, Xin Wang, Zhenhong Zhong, Chunjun Chen i Mengling Wu. "Synthesis of Durian-like TiO2@CdS Core-Shell Structure and Study on H2 Generation Properties". Catalysts 12, nr 10 (11.10.2022): 1211. http://dx.doi.org/10.3390/catal12101211.
Pełny tekst źródłaKe, Ou Yang, Xie Shan i Xiao Ou Ma. "Preparation and Characterization of Photocatalytic TiO2/CdS Nanocomposite Loaded on Multi-Walled Carbon Nanotues (MWCNTs)". Applied Mechanics and Materials 184-185 (czerwiec 2012): 1114–19. http://dx.doi.org/10.4028/www.scientific.net/amm.184-185.1114.
Pełny tekst źródłaChen, Yue, Ping Li i Shuwang Duo. "In-situ Preparation of CdS/TiO2 Heterojunction Based on MOFs-Derived TiO2 with Improved Photocatalytic Performance". Journal of Physics: Conference Series 2168, nr 1 (1.01.2022): 012017. http://dx.doi.org/10.1088/1742-6596/2168/1/012017.
Pełny tekst źródłaRani C., Usha, Pragathiswaran C., Balakrishnan D., Selvarani K. i Smitha C. "TiO2@ZnO–CdS Nanocomposites for Sensing and Cytotoxicity Applications". International Journal of Zoological Investigations 08, Special Issue (2022): 01–06. http://dx.doi.org/10.33745/ijzi.2022.v08i0s.001.
Pełny tekst źródłaAL-Jawad, Selma M. H., Natheer Jamal Imran i Mohammad R. Mohammad. "Effect of electrolyte solution and deposition methods on TiO2/CdS core–shell nanotube arrays for photoelectrocatalytic application". European Physical Journal Applied Physics 92, nr 2 (30.10.2020): 20102. http://dx.doi.org/10.1051/epjap/2020200127.
Pełny tekst źródłaRozprawy doktorskie na temat "TiO2–CdS"
Frederice, Rafael. "Preparação e caracterização de sistemas híbridos CdS/TiO2/SiO2 para aplicações fotoquímicas". Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/75/75134/tde-10122014-153643/.
Pełny tekst źródłaIn the present work, three types of nanosized hybrid photocatalysts, CdS, CdS/TiO2 and CdS/TiO2/SiO2, were synthesized and used in three photochemical applications: macro and microscopic photodegradation of a dye, photolysis of water to generate H2 monitored by in situ mass spectrometry and study of a redox reaction by wide-field fluorescence microscopy. Scanning (SEM) and transmission (TEM) electronic microscopies showed quasi-monodispersed silica spheres with a diameter of about 300 nm and CdS and TiO2 nanoparticles with a diameter of approximately 5 nm highly agglomerated. The coating of the silica with CdS and TiO2 was not uniform, resulting in \"islands\" preferentially isolated. Despite the heterogeneous morphology of the photocatalysts, they were efficient in the degradation of a safranine O solution, showing kinetics of first order with respect to dye concentration. With regard to water photolysis, the ternary system (CdS/TiO2/SiO2) showed the highest rate of H2 production (0.79 mmol g-1 h-1) , which indicates more efficient charge transfer or injection between CdS and TiO2 due to better contact between the two semiconductors on the surface of the silica nanoparticles (NPs). This system also was the most efficient photocatalyst in the photorreduction of the nonfluorescent dye resazurin into the fluorescent dye resorufin, monitored by fluorescence intermittency measurements using wide-field microscopy. In general, the systems after adding the dye presented slower fluorescence intermittency, with higher times of off relaxation. The photoreduction of the dye provided an interesting method for mapping the regions of CdS/TiO2 charge injection, initially dark and then with high emission intensity.
Pan, Jie. "MATERIAL PROPERTY STUDY ON DYE SENSITIZED SOLAR CELLS AND CU(GA,IN)SE2 SOLAR CELLS". Miami University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=miami1240594917.
Pełny tekst źródłaSousa, Charllys Barros Andrade. "ObtenÃÃo e AnÃlise de Filmes Finos de CdS e TiO2 Para Uso em CÃlulas Solares Fotovoltaicas". Universidade Federal do CearÃ, 2010. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5242.
Pełny tekst źródłaDedicado à deposiÃÃo e caracterizaÃÃo de filmes finos de Sulfeto de CÃdmio e DiÃxido de TitÃnio para a aplicaÃÃo em cÃlulas solares fotovoltaicas. Cada filme foi depositado por um processo diferente. O reagente TiO2 da marca vetec, foi misturado com Ãcido clorÃdrico em soluÃÃo aquosa formando uma dispersÃo. Essa dispersÃo foi espalhada sobre o substrato de vidro e depois aquecida com uma chapa aquecedora. Depois de formado o filme, foram feitos MEV e EDX do mesmo. Para preparar o CdS foi necessÃrio um procedimento um pouco mais complexo, que à a deposiÃÃo por banho quÃmico, onde à feita uma mistura de reagentes e mergulhado o substrato nesta mistura. Ocorreram reaÃÃes quÃmicas cujo resultado foi a formaÃÃo do CdS, que ocorre em toda a superfÃcie do recipiente e do substrato imerso na soluÃÃo. As mesmas caracterizaÃÃes feitas no TiO2 foram feitas no CdS, ambos mostraram uma boa uniformidade, tambÃm foi observado que os filmes mostraram uma boa aderÃncia ao substrato. A fim de comprovar a aplicatividade dos filmes para fins fotovoltaicos, preparou-se um protÃtipo de cÃlula solar fotovoltaica, que foi colocada em contato com a luz solar para assim medir a corrente elÃtrica e a diferenÃa de potencial. TambÃm foram medidos os mesmos parÃmetros no escuro, para comparaÃÃo de resultados e comprovaÃÃo da geraÃÃo de energia elÃtrica atravÃs do contato com a luz. AtravÃs dos resultados destes testes, concluiu-se que os filmes apresentaram o efeito fotoelÃtrico, sendo assim, aplicÃveis em cÃlulas solares fotovoltaicas.
This work is dedicated to the deposition and characterization of thin films of cadmium sulfide and titanium dioxide for application in photovoltaic solar cells. Each film is deposited by a different process. The reagent TiO2 brand Vetec, was mixed with hydrochloric acid in aqueous solution forming a dispersion. This dispersion is spread on the glass substrate and then heated with a plate heater. After the deposit, were made SEM and EDX of the films. In order to prepare CdS a more complex process called chemical bath deposition was required, made of a mixture of reagents with the substrate immersed in it. Chemical reactions occurred which result was the formation of CdS, which occurs across the surface of the container and the substrate immersed in the solution. The same characterizations were carried out on TiO2 in CdS, showed in both good uniformity, was also observed that the films showed good adhesion to the substrate. In order to prove that films are applicable for photovoltaic energy conversion, a prototype of a solar photovoltaic cell was prepared, which was placed in contact with a type of light for measuring electrical parameters like the electric current and potential difference. We also measured the same parameters in the dark, for comparison of results and to prove power generation in contact with the light. The research tests provides evidence that films showed the photoelectric effect, therefore, applicable in photovoltaic solar cells.
Pujalte, Igor. "Étude in vitro de la toxicité de nanoparticules métalliques (TiO2, ZnO, CdS) sur la cible rénale". Thesis, Bordeaux 2, 2011. http://www.theses.fr/2011BOR21849/document.
Pełny tekst źródłaMany uncertainties remain about the potential toxic effect of nanoparticles (NPs), and their becoming in human organism. The aim of this study was to understand the cytotoxic mechanisms induced by metallic NPs, on a secondary target organ, the kidney. NPs were able to cross biological barriers, be carried in blood to kidney cells, on glomerular or tubular cells. This study was performed in vitro, with NPs of titanium (TiO2: 12 nm), zinc (ZnO: 75 nm) and cadmium (CdS: 8 nm), on mesangial IP-15 cells and epithelial HK-2 cells. Results showed effects depending on cell type, chemical nature of NPs and their solubility. TiO2 NPs have no cytotoxic effect (IC50>100µg/cm²), probably due to their insolubility. Exposure to CdS and ZnO NPs lead to cell death (IC50< 7 µg/ cm²). Release of metallic cations Cd2+ and Zn2+ are the main causes of toxicity. ROS production and disruption of oxidative cellular balance (GSH/ GSSG) were correlated to the cytotoxic effects of ZnO and CdS NPs. A molecular approach was used to identify signaling pathways involved in oxidative stress response (nuclear translocation of NF-kappaB and Nrf2).Internalization and accumulation of TiO2 and CdS NPs were responsible of oxidative stress induction and cytotoxic effect on long term exposure
Sousa, Charllys Barros Andrade. "Obtenção e análise de filmes finos de CdS e TiO2 para uso em células solares fotovoltaicas". reponame:Repositório Institucional da UFC, 2010. http://www.repositorio.ufc.br/handle/riufc/15921.
Pełny tekst źródłaSubmitted by Marlene Sousa (mmarlene@ufc.br) on 2016-03-21T11:54:46Z No. of bitstreams: 1 2010_dis_cbasousa.pdf: 3271134 bytes, checksum: 26800061b064d35cf64afc5a31bc642f (MD5)
Approved for entry into archive by Marlene Sousa(mmarlene@ufc.br) on 2016-03-31T17:03:13Z (GMT) No. of bitstreams: 1 2010_dis_cbasousa.pdf: 3271134 bytes, checksum: 26800061b064d35cf64afc5a31bc642f (MD5)
Made available in DSpace on 2016-03-31T17:03:13Z (GMT). No. of bitstreams: 1 2010_dis_cbasousa.pdf: 3271134 bytes, checksum: 26800061b064d35cf64afc5a31bc642f (MD5) Previous issue date: 2010-03-05
This work is dedicated to the deposition and characterization of thin films of cadmium sulfide and titanium dioxide for application in photovoltaic solar cells. Each film is deposited by a different process. The reagent TiO2 brand Vetec, was mixed with hydrochloric acid in aqueous solution forming a dispersion. This dispersion is spread on the glass substrate and then heated with a plate heater. After the deposit, were made SEM and EDX of the films. In order to prepare CdS a more complex process called chemical bath deposition was required, made of a mixture of reagents with the substrate immersed in it. Chemical reactions occurred which result was the formation of CdS, which occurs across the surface of the container and the substrate immersed in the solution. The same characterizations were carried out on TiO2 in CdS, showed in both good uniformity, was also observed that the films showed good adhesion to the substrate. In order to prove that films are applicable for photovoltaic energy conversion, a prototype of a solar photovoltaic cell was prepared, which was placed in contact with a type of light for measuring electrical parameters like the electric current and potential difference. We also measured the same parameters in the dark, for comparison of results and to prove power generation in contact with the light. The research tests provides evidence that films showed the photoelectric effect, therefore, applicable in photovoltaic solar cells.
Dedicado à deposição e caracterização de filmes finos de Sulfeto de Cádmio e Dióxido de Titânio para a aplicação em células solares fotovoltaicas. Cada filme foi depositado por um processo diferente. O reagente TiO2 da marca vetec, foi misturado com ácido clorídrico em solução aquosa formando uma dispersão. Essa dispersão foi espalhada sobre o substrato de vidro e depois aquecida com uma chapa aquecedora. Depois de formado o filme, foram feitos MEV e EDX do mesmo. Para preparar o CdS foi necessário um procedimento um pouco mais complexo, que é a deposição por banho químico, onde é feita uma mistura de reagentes e mergulhado o substrato nesta mistura. Ocorreram reações químicas cujo resultado foi a formação do CdS, que ocorre em toda a superfície do recipiente e do substrato imerso na solução. As mesmas caracterizações feitas no TiO2 foram feitas no CdS, ambos mostraram uma boa uniformidade, também foi observado que os filmes mostraram uma boa aderência ao substrato. A fim de comprovar a aplicatividade dos filmes para fins fotovoltaicos, preparou-se um protótipo de célula solar fotovoltaica, que foi colocada em contato com a luz solar para assim medir a corrente elétrica e a diferença de potencial. Também foram medidos os mesmos parâmetros no escuro, para comparação de resultados e comprovação da geração de energia elétrica através do contato com a luz. Através dos resultados destes testes, concluiu-se que os filmes apresentaram o efeito fotoelétrico, sendo assim, aplicáveis em células solares fotovoltaicas.
Pan, Jie. "Material property study on dye sensitized solar cells and cu(ga,in)se2 solar cells". Oxford, Ohio : Miami University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=miami1240594917.
Pełny tekst źródłaMelo, Tede Fernandes. "Obtaining an photovoltaic solar cell based in CdS and TiO2 photosensitized with dye in glass substrate with conductive layer". Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12131.
Pełny tekst źródłaThis research describes the process of obtaining a photovoltaic cell, since getting electrical conductor glasses used for the flow of electrons coming from the photovoltaic effect until the deposition of thin films of semiconductor titanium dioxide (TiO2) and cadmium sulfide (CdS) at each of these glasses. The use of natural or synthetic dyes deposited on titanium dioxide layer has the objective to increase the absorption spectrum of the TiO2, since sunlight emits most of its energy in the frequency range of visible light. After joining the two glasses with thin films deposited over TiO2 plus dye and CdS, it was used a potassium triiodide electrolyte for regeneration and consequently the activation of photovoltaic solar cell. After mounting the cell concerned, tests of photoactivity have been performed by exposing the cells to sunlight collected for specified periods and the values of voltage and photocurrent generated. Theoretical studies have been conducted to mathematical modeling of the behavior of the solar cell mounted, and then we have analyzed the efficiency of converting solar energy into electrical energy. The constituents of the cell have been characterized by the techniques of X-ray diffraction (XRD) and scanning electron microscopy (SEM) for analyzing the porosity, uniformity and other physical parameters of thin films.
O presente trabalho descreve o processo de obtenÃÃo de uma cÃlula fotovoltaica, desde a obtenÃÃo de vidros condutores elÃtricos utilizados para o fluxo dos elÃtrons oriundos do efeito fotovoltaico, atà a deposiÃÃo dos filmes finos dos semicondutores diÃxido de titÃnio (TiO2) e sulfeto de cÃdmio (CdS) em cada um dos vidros. O uso de corantes naturais ou sintÃticos na camada depositada de diÃxido de titÃnio possuiu como objetivo aumentar o espectro de absorÃÃo do mesmo, uma vez que a luz solar emite uma grande parte de sua energia na faixa de frequÃncia da luz visÃvel. Depois de unir os dois vidros com os filmes finos depositados de TiO2 mais corante e o CdS, utilizou-se o eletrÃlito de tri-iodeto de potÃssio para a regeneraÃÃo e consequentemente a ativaÃÃo da cÃlula solar fotovoltaica. ApÃs a montagem da cÃlula em questÃo, foram realizados testes de fotoatividade, expondo as cÃlulas ao sol por perÃodos determinados e coletados os valores da fotocorrente gerada e a tensÃo, alÃm disso, foram realizados estudos teÃricos para modelagem matemÃtica do comportamento da cÃlula solar montada e em seguida analisou-se a eficiÃncia de conversÃo de energia solar em energia elÃtrica. Os constituintes da cÃlula foram caracterizados pelas tÃcnicas de difraÃÃo de raios-X (DRX) e microscopia eletrÃnica de varredura (MEV) para analisar a porosidade, uniformidade e outros parÃmetros fÃsicos dos filmes finos.
MOYA, Johan René González. "Nanotubos de TiO2 sensibilizados com quantum dots de CdS e suas aplicações para a geração de hidrogênio mediante fotocatálise e fotoeletrocatálise". Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/17768.
Pełny tekst źródłaMade available in DSpace on 2016-08-31T13:00:29Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese Doutorado Johan CD.pdf: 3689018 bytes, checksum: 956c4e0d76742d36ffe10e5bd9f4fa90 (MD5) Previous issue date: 2016-02-29
CNPq
No presente trabalho foi investigado o desempenho de nanotubos de TiO2 sensibilizados com quantum dots de CdS na geração de hidrogênio por meio da reação de dissociação da água por meio da fotocatálise e fotoeletrocatálise. Os nanotubos de TiO2 foram obtidos pelo método de anodização (30 V, 1 hora) de chapas de Ti, em etilenoglicol e água contendo íons fluoreto. As amostras anodizadas foram submetidas a tratamento térmico 400°C durante 3 horas. Posteriormente as amostras foram sensibilizadas com quantum dots de CdS via síntese hidrotérmica in situ usando o ácido 3-mercaptopropiônico como agente estabilizante. A eficiência fotocatalítica dos materiais na produção de hidrogênio foi investigada por meio da reação de dissociação da água utilizando como fonte de irradiação um simulador solar. A quantificação do hidrogênio gerado foi determinada por meio de cromatógrafia gasosa. Por outro lado, para estimar a eficiência de geração de hidrogênio via fotoeletrocatálise, as amostras foram avaliadas como fotoânodos e medidas da fotocorrente gerada pela irradiação em uma célula fotoeletroquímica (PEC) de três eletrodos foram realizadas. A sensibilização dos nanotubos de TiO2 com os quantum dots de CdS a partir da síntese hidrotérmica in situ, permitiu uma boa impregnação e distribuição uniforme dos quantum dots ao redor da superfície dos nanotubos, de acordo com as análises de EDS e XPS. O perfil de profundidade de XPS mostrou que a concentração de CdS permaneceu praticamente inalterada (homogênea) ao longo da matriz nanotubular. A presença de ânions sulfato evidenciou a oxidação do material preferentemente na superfície. Os nanotubos conferem uma proteção ao CdS frente à oxidação e protegem também os quantum dots quanto à fotocorrosão na solução de sacrifício S2-/SO32- utilizada. Este comportamento define uma boa estabilidade na fotocorrente gerada como mostrado em experimentos de longa duração (20 horas) sob irradiação. Os resultados experimentais mostraram três comportamentos diferentes para a geração de H2 quando o tempo de síntese dos QDs de CdS aumenta. Foram observados, efeitos similares, antagônicos e sinérgicos frente à atividade fotocatalítica em relação aos nanotubos de TiO2. O efeito antagônico parece estar relacionado com a presença de duas populações de tamanhos de QDs de CdS, onde a população com um band gap menor atua como uma armadilha para os elétrons fotogerados pela população com um band gap maior, diminuindo a atividade fotocatalítica do TiO2 na região ultravioleta. A transferência de elétrons a partir dos QDs de CdS para o TiO2 foi comprovada pelos resultados de UPS combinados com as medidas do band gap óptico. A maior absorção no visível após a sensibilização com o CdS combinada com a transferência de elétrons possibilita um incremento na taxa de geração de hidrogênio por meio da fotocatálise a partir de luz visível de quase zero para os nanotubos de TiO2 até cerca de 0,3 μmol cm-2 h-1 após sensibilização com os QDs de CdS. No caso da fotoeletrocatálise em uma PEC, a taxa de geração de H2 a partir de luz visível estimada pela fotocorrente gerada após a sensibilização (1,79 μmol cm-2 h-1) chega a ser até 12 vezes maior que para os nanotubos de TiO2 sem sensibilizar (0,15 μmol cm-2 h-1).
In the present work, we investigated the performance of TiO2 nanotubes sensitized with CdS quantum dots on the photocatalytic and photoelectrocatalytic H2 production reaction. TiO2 nanotubes were obtained by anodization of Ti foil, followed by annealing to crystallize the nanotubes into anatase phase. Afterwards, the samples were sensitized with CdS quantum dots via an in situ hydrothermal route using 3-mercaptopropionic acid as the capping agent. This sensitization technique permits high loading and uniform distribution of CdS quantum dots onto TiO2 nanotubes. The XPS depth profile showed that CdS concentration remains almost unchanged (homogenous), while the concentration relative to the sulfate anion decreases by more than 80 % with respect to the initial value after ~200 nm in depth. The presence of sulfate anions is due to the oxidation of sulfide and occurs in greater proportion in the material surface. This protection for air oxidation inside the nanotubular matrix also protected the CdS from photocorrosion in sacrificial solution leading to good stability properties proved by a long duration photocurrent measurements. The effect of the sizes of CdS quantum dots attached to TiO2 nanotubes on the hydrogen production via photocatalysis was investigated. The experimental results showed three different behaviors when the CdS size is increased in the sensitized samples, e.g., similar, deactivation and activation effects on the hydrogen production with regard to TiO2 nanotubes. The deactivation effect was related with two populations of sizes of CdS, where the population with a shorter band gap acts as a trap for the electrons photogenerated by the population with a larger band gap. Electron transfer from CdS quantum dots to TiO2 semiconductor nanotubes was proven by the results of UPS combined with optical band gap measurements. This property facilitates an improvement of the visible-light photocatalytic hydrogen evolution rate from zero, for TiO2 nanotubes, to approximately 0.3 μmolcm-2h-1 for TiO2 nanotubes sensitized with CdS quantum dots. The hydrogen generation rate estimated from photocurrents measurements via photoelectrocatalysis in PEC systems was also investigated. The hydrogen generation rate after sensitization was improved from 0,15 μmol cm-2 h-1 to 1,79 μmol cm-2 h-1, near to 12 times better performance under visible-light irradiation.
Melo, Tede Fernandes. "Obtenção de uma célula solar fotovoltaica baseada em CdS e TiO2 fotossensibilizada com corante em substrato de vidro com camada condutora". reponame:Repositório Institucional da UFC, 2014. http://www.repositorio.ufc.br/handle/riufc/11063.
Pełny tekst źródłaSubmitted by Marlene Sousa (mmarlene@ufc.br) on 2015-03-05T11:43:18Z No. of bitstreams: 1 2014_dis_tfmelo.pdf: 3211633 bytes, checksum: 047f4fcb695cbf88597e4382a967713e (MD5)
Approved for entry into archive by Marlene Sousa(mmarlene@ufc.br) on 2015-03-24T11:48:42Z (GMT) No. of bitstreams: 1 2014_dis_tfmelo.pdf: 3211633 bytes, checksum: 047f4fcb695cbf88597e4382a967713e (MD5)
Made available in DSpace on 2015-03-24T11:48:42Z (GMT). No. of bitstreams: 1 2014_dis_tfmelo.pdf: 3211633 bytes, checksum: 047f4fcb695cbf88597e4382a967713e (MD5) Previous issue date: 2014-06-02
This research describes the process of obtaining a photovoltaic cell, since getting electrical conductor glasses used for the flow of electrons coming from the photovoltaic effect until the deposition of thin films of semiconductor titanium dioxide (TiO2) and cadmium sulfide (CdS) at each of these glasses. The use of natural or synthetic dyes deposited on titanium dioxide layer has the objective to increase the absorption spectrum of the TiO2, since sunlight emits most of its energy in the frequency range of visible light. After joining the two glasses with thin films deposited over TiO2 plus dye and CdS, it was used a potassium triiodide electrolyte for regeneration and consequently the activation of photovoltaic solar cell. After mounting the cell concerned, tests of photoactivity have been performed by exposing the cells to sunlight collected for specified periods and the values of voltage and photocurrent generated. Theoretical studies have been conducted to mathematical modeling of the behavior of the solar cell mounted, and then we have analyzed the efficiency of converting solar energy into electrical energy. The constituents of the cell have been characterized by the techniques of X-ray diffraction (XRD) and scanning electron microscopy (SEM) for analyzing the porosity, uniformity and other physical parameters of thin films.
O presente trabalho descreve o processo de obtenção de uma célula fotovoltaica, desde a obtenção de vidros condutores elétricos utilizados para o fluxo dos elétrons oriundos do efeito fotovoltaico, até a deposição dos filmes finos dos semicondutores dióxido de titânio (TiO2) e sulfeto de cádmio (CdS) em cada um dos vidros. O uso de corantes naturais ou sintéticos na camada depositada de dióxido de titânio possuiu como objetivo aumentar o espectro de absorção do mesmo, uma vez que a luz solar emite uma grande parte de sua energia na faixa de frequência da luz visível. Depois de unir os dois vidros com os filmes finos depositados de TiO2 mais corante e o CdS, utilizou-se o eletrólito de tri-iodeto de potássio para a regeneração e consequentemente a ativação da célula solar fotovoltaica. Após a montagem da célula em questão, foram realizados testes de fotoatividade, expondo as células ao sol por períodos determinados e coletados os valores da fotocorrente gerada e a tensão, além disso, foram realizados estudos teóricos para modelagem matemática do comportamento da célula solar montada e em seguida analisou-se a eficiência de conversão de energia solar em energia elétrica. Os constituintes da célula foram caracterizados pelas técnicas de difração de raios-X (DRX) e microscopia eletrônica de varredura (MEV) para analisar a porosidade, uniformidade e outros parâmetros físicos dos filmes finos.
Mazumdar, Sayantan. "Harvesting Solar Photon Using TiO2-CdS Nanostructured Semiconductor Assemblies". Thesis, 2015. https://etd.iisc.ac.in/handle/2005/4527.
Pełny tekst źródłaCzęści książek na temat "TiO2–CdS"
Gnatyuk, Yuriy, Maxim Zhukovskyj, Natalia Smirnova, Anna Eremenko, Asta Guobiene i Sigitas Tamulevičius. "Sol-Gel Synthesis of Mesoporous TiO2 Films for Visible Light Sensitive TiO2/CdS Heterostructures". W Sol-Gel Methods for Materials Processing, 315–21. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8514-7_22.
Pełny tekst źródłaKodan, Nisha, Aadesh P. Singh, Dipika Sharma i B. R. Mehta. "Photoelectrochemical Study of TiO2/CdS Heterostructure Thin Films Prepared via rf Sputtering". W Springer Proceedings in Physics, 1235–39. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_188.
Pełny tekst źródłaManivannan, A., Aaron Peterson, Winn Wilson, Bratindranath Mukherjee i Vaidyanathan Ravi Subramanian. "Hydrogen Production and Photodegradation at TiO2/Metal/CdS Sandwich Using UV–Visible Light". W Semiconductor Materials for Solar Photovoltaic Cells, 141–67. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20331-7_5.
Pełny tekst źródłaSong, Yan, Shusen Chen, Yantao Su, Ziming Li, Fengju Wang, Yangfei Gou, Haizhen Wang i Hua Chang. "Construction of CDS/TIO2/HGS Composite Materials and Photocatalytic Reduction of Hexavalent Uranium in Wastewater". W Springer Proceedings in Physics, 443–52. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8899-8_46.
Pełny tekst źródłaSerpone, Nick, i Ezio Pelizzetti. "Fundamental Studies Into Primary Events in Photocatalysis Employing CdS and TiO2 Semiconductors: Photoluminescence, Laser Flash Photolysis and Pulse Radiolysis". W Homogeneous and Heterogeneous Photocatalysis, 51–89. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4642-2_3.
Pełny tekst źródłaPeterson, Aaron, Winn Wilson, Bratindranath Mukherjee i Vaidyanathan (Ravi) Subramanian. "Simultaneous Photodegradation and Hydrogen Production with TiO2/Pt/CdS Using UV–Visible Light in the Presence of a Sacrificial Agent and a Pollutant". W Materials and Processes for Solar Fuel Production, 153–71. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1628-3_8.
Pełny tekst źródłaZhao, Liuying, Fufang Zhou, Songjie Han, Ping Wang i Bi Jing. "Researches on TiO2 nanometer electrode of CdS quantum dots sensitized solar cells". W Advances in Energy Equipment Science and Engineering, 207–9. CRC Press, 2015. http://dx.doi.org/10.1201/b19126-42.
Pełny tekst źródłaChristine Almeida Silva, Anielle, Jerusa Maria de Oliveira, Kelen Talita Romão da Silva, Francisco Rubens Alves dos Santos, João Paulo Santos de Carvalho, Rose Kethelyn Souza Avelino, Eurípedes Alves da Silva Filho i in. "Fluorescent Markers: Proteins and Nanocrystals". W Bioluminescence [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96675.
Pełny tekst źródłaBhatt, Jayesh, Shubang Vyas, Avinash Kumar Rai, Neeru Madan i Rakshit Ameta. "Graphene–Based Photocatalysts". W Graphene-based Carbocatalysts: Synthesis, Properties and Applications (Volume 2), 1–49. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815136050123020005.
Pełny tekst źródłaStreszczenia konferencji na temat "TiO2–CdS"
Pan, Jie, Lei L. Kerr i Xuege Wang. "CDS sensitized nanostructured TiO2 and ZnO solar cells". W 2009 34th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2009. http://dx.doi.org/10.1109/pvsc.2009.5411664.
Pełny tekst źródłaEnlai, Dong, Li Shuangyuan, Gao Mengdi, Zhang Lina, Zhang Wei i Ma Jinwen. "The photoelectronchemical properties of H:PbS/CdS/TiO2 photoelectrodes". W 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC). IEEE, 2017. http://dx.doi.org/10.1109/yac.2017.7967550.
Pełny tekst źródłaPena, Juan Luis, E. Hernandez-Rodriguez, Victor Rejon, R. Mis-Fernandez i I. Riech. "Thermal behavior of ITO/TiO2/CdS/CdTe solar cells". W 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7355894.
Pełny tekst źródłaBhattacharjee, Mitradip, Saptak Rarotra, Sagnik Middya i Dipankar Bandyopadhyay. "The effect of annealing on band gap and optical properties of CdS/CdS-TiO2 nanoparticles". W 2017 4th International Conference on Opto-Electronics and Applied Optics (Optronix). IEEE, 2017. http://dx.doi.org/10.1109/optronix.2017.8349999.
Pełny tekst źródłaZhao, Junwei, Jingjing Du, Youbin Yu, Huaijun Wang i Fengmin Ji. "Photocatalytic Degradation of Gaseous Benzene over CdS/TiO2 Nanotube Arrays". W Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/acpc.2016.af2a.138.
Pełny tekst źródłaEnlai Dong, Zhiying Wu, Wei zhang, Chunxi Lu, Lina Zhang, Qiushi Wang, Jinwen Ma i Jing Wang. "Photoelectrochemical performance of PbS/CdS quantum dot cosensitized TiO2 photoelectrodes". W 2015 Chinese Automation Congress (CAC). IEEE, 2015. http://dx.doi.org/10.1109/cac.2015.7382695.
Pełny tekst źródłaPeter, I. John, S. Dhinakaran, K. Ramachandran i P. Nithiananthi. "Performance of TiO2/CdS/Bi2S3 heterostructure based semiconductor sensitized solar cell". W DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5113396.
Pełny tekst źródłaWang, Bo, i Lei L. Kerr. "Nanostructured TiO2 and ZnO solar cells using CdS as sensitizer: Stability investigation". W 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5615926.
Pełny tekst źródłaWen, Min, Wen Chen, Jingjing Du, Yueli Liu i Chao Zhang. "Photocatalytic Degradation of Gaseous Benzene with CdS/TiO2 Prepared by Water in Oil Method". W Nanophotonics, Nanoelectronics and Nanosensor. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/n3.2013.nsa3a.43.
Pełny tekst źródłaMisra, M., Madan Lal Singla, P. Kapur i C. Ghansyam. "Compact packing of CdS nanoparticle in flower like TiO2 nanorods for DSSC solar cell". W 2012 International Conference on Devices, Circuits and Systems (ICDCS 2012). IEEE, 2012. http://dx.doi.org/10.1109/icdcsyst.2012.6188745.
Pełny tekst źródła