Gotowa bibliografia na temat „TIME QUANTUM”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „TIME QUANTUM”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "TIME QUANTUM"
Zhu, Gaoyan, Lei Xiao, Bingzi Huo i Peng Xue. "Photonic discrete-time quantum walks [Invited]". Chinese Optics Letters 18, nr 5 (2020): 052701. http://dx.doi.org/10.3788/col202018.052701.
Pełny tekst źródłaAGLIARI, ELENA, OLIVER MÜLKEN i ALEXANDER BLUMEN. "CONTINUOUS-TIME QUANTUM WALKS AND TRAPPING". International Journal of Bifurcation and Chaos 20, nr 02 (luty 2010): 271–79. http://dx.doi.org/10.1142/s0218127410025715.
Pełny tekst źródłaGóźdź, Andrzej, Marek Góźdź i Aleksandra Pȩdrak. "Quantum Time and Quantum Evolution". Universe 9, nr 6 (26.05.2023): 256. http://dx.doi.org/10.3390/universe9060256.
Pełny tekst źródłaSkulimowski, Marcin. "Quantum World with Quantum Time". Foundations of Physics Letters 19, nr 2 (kwiecień 2006): 127–41. http://dx.doi.org/10.1007/s10702-006-0371-4.
Pełny tekst źródłaBojowald, Martin, Golam Mortuza Hossain, Mikhail Kagan i Casey Tomlin. "Quantum Matter in Quantum Space-Time". Quantum Matter 2, nr 6 (1.12.2013): 436–43. http://dx.doi.org/10.1166/qm.2013.1078.
Pełny tekst źródłaNassar, Antônio B. "Quantum traversal time". Physical Review A 38, nr 2 (1.07.1988): 683–87. http://dx.doi.org/10.1103/physreva.38.683.
Pełny tekst źródłaDavies, P. C. W. "Quantum tunneling time". American Journal of Physics 73, nr 1 (styczeń 2005): 23–27. http://dx.doi.org/10.1119/1.1810153.
Pełny tekst źródłaHoriuchi, Noriaki. "Quantum time lens". Nature Photonics 11, nr 5 (maj 2017): 267. http://dx.doi.org/10.1038/nphoton.2017.70.
Pełny tekst źródłaLoveridge, Leon, i Takayuki Miyadera. "Relative Quantum Time". Foundations of Physics 49, nr 6 (31.05.2019): 549–60. http://dx.doi.org/10.1007/s10701-019-00268-w.
Pełny tekst źródłaKiefer, Claus, i Patrick Peter. "Time in Quantum Cosmology". Universe 8, nr 1 (8.01.2022): 36. http://dx.doi.org/10.3390/universe8010036.
Pełny tekst źródłaRozprawy doktorskie na temat "TIME QUANTUM"
Oppenheim, Jonathan A. "Quantum time". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ48689.pdf.
Pełny tekst źródłaLaflamme, Raymond. "Time and quantum cosmology". Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278123.
Pełny tekst źródłaCramer, Claes Richard. "Quantum aspects of time-machines". Thesis, University of York, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265661.
Pełny tekst źródłaVona, Nicola. "On time in quantum mechanics". Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-166201.
Pełny tekst źródłaObwohl Zeitmessungen tagtäglich in vielen Laboren durchgeführt werden, ist ihre theoretische Beschreibung noch unklar. Gleichermaßen sind Gültigkeit und Bedeutung der Energie-Zeit-Unschärfe ungeklärt. Der erste Teil dieser Arbeit diskutiert die Notwendigkeit von positive operator valued measures (POVM) zur Beschreibung von allen Quantenexperimenten, sowie die bedeutende Rolle des Wahrscheinlichkeitsstroms in Zeitmessungen. Außerdem, wird gezeigt, dass kein POVM existiert, der den Wahrscheinlichkeitsstrom jeder Wellenfunktion in einer natürlichen Menge annähert. Die Wahl dieser Menge ist aber entscheidend, und auf beschränkten Mengen ist der Wahrscheinlichkeitsstrom eine gute Vorhersage für Zeitmessungen. Einige Ideen sind diskutiert, wie man Zeitexperimente durchführen kann, um Quanteneffekten zu detektieren. Der zweite Teil dieser Arbeit beschäftigt sich mit der Energie-Zeit-Unschärfe, insbesondere für ein Modell von Alpha-Zerfall, wobei man die Energievarianz explizit berechnen kann, und die Zeitvarianz abschätzt. Diese Abschätzung ist für Systeme mit langen Lebensdauern gut, und in diesem Fall wird gezeigt, dass die Energie-Zeit-Unschärfe gilt. Ebenso wird gezeigt, dass die linewidth-lifetime relation gilt. Im allgemein wird angenommen, dass diese zwei Relationen dieselben sind. Im Gegensatz dazu, wird in der Dissertation aber gezeigt, dass sie sich unabhängig voneinander verhalten. Für diese Resultate, braucht man quantitative Streuabschätzungen. Zu diesem Zweck werden Schranken in der Form $\|\1_Re^{-iHt}\psi\|_2^2 \leq C t^{-3}$ in der Dissertation gezeigt, wo $\psi$ der Anfangszustand ist, $H$ der Hamiltonoperator, $R$ eine positive Konstante, und $C$ explizit bekannt ist. Als Zwischenschritt werden Schranken für die Ableitungen der $S$-Matrix in der Form $\|\1_K S^{(n)}\|_\infty \leq C_{n,K} $ bewiesen, wobei $n=1,2,3$, und die Konstanten $C_{n,K}$ explizit bekannt sind.
Poulios, Konstantinos. "Integrated photonic continuous-time quantum walks". Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.633256.
Pełny tekst źródłaRodgers, Peter A. "Time-dependent pulses in quantum optics". Thesis, Queen's University Belfast, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356924.
Pełny tekst źródłaChilds, Andrew MacGregor 1977. "Quantum information processing in continuous time". Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/16663.
Pełny tekst źródłaIncludes bibliographical references (p. 127-138) and index.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Quantum mechanical computers can solve certain problems asymptotically faster than any classical computing device. Several fast quantum algorithms are known, but the nature of quantum speedup is not well understood, and inventing new quantum algorithms seems to be difficult. In this thesis, we explore two approaches to designing quantum algorithms based on continuous-time Hamiltonian dynamics. In quantum computation by adiabatic evolution, the computer is prepared in the known ground state of a simple Hamiltonian, which is slowly modified so that its ground state encodes the solution to a problem. We argue that this approach should be inherently robust against low-temperature thermal noise and certain control errors, and we support this claim using simulations. We then show that any adiabatic algorithm can be implemented in a different way, using only a sequence of measurements of the Hamiltonian. We illustrate how this approach can achieve quadratic speedup for the unstructured search problem. We also demonstrate two examples of quantum speedup by quantum walk, a quantum mechanical analog of random walk. First, we consider the problem of searching a region of space for a marked item. Whereas a classical algorithm for this problem requires time proportional to the number of items regardless of the geometry, we show that a simple quantum walk algorithm can find the marked item quadratically faster for a lattice of dimension greater than four, and almost quadratically faster for a four-dimensional lattice. We also show that by endowing the walk with spin degrees of freedom, the critical dimension can be lowered to two. Second, we construct an oracular problem that a quantum walk can solve exponentially faster than any classical algorithm.
(cont.) This constitutes the only known example of exponential quantum speedup not based on the quantum Fourier transform. Finally, we consider bipartite Hamiltonians as a model of quantum channels and study their ability to process information given perfect local control. We show that any interaction can simulate any other at a nonzero rate, and that tensor product Hamiltonians can simulate each other reversibly. We also calculate the optimal asymptotic rate at which certain Hamiltonians can generate entanglement.
by Andrew MacGregor Childs.
Ph.D.
Tomasevic, Marija. "Quantum Aspects of Space and Time". Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/672688.
Pełny tekst źródłaComo es propio de toda teoría clásica, la Relatividad General no puede aspirar a ser más que una teoría efectiva, cuyo campo de estudio se reduce al de fenómenos emergentes de estructuras más elementales. Sin embargo, se trata de una teoría dificil de tratar al poseer propiedades no compartidas por el resto de teorías clásicas: una descripción holográfica. A pesar de no haber proporcionado todas las respuestas que buscábamos acerca de la naturaleza del espacio y del tiempo, la holografía ha jugado un papel fundamental; en especial mostrándonos una conexión entre nociones tan dispares como la información cuántica y la geometría, similar a la conexión que Gibbons y Hawking [1] dieron a conocer entre el área y la entropía. Esta tesis tiene como objetivo el estudio de casos en los que esta relación se vuelve manifiesta, usando el régimen semiclásico de gravedad. El primer capítulo profundiza en la conexión entre área y entropía y algunas de las consecuencias que esta implica: la formulación semiclásica de la Desigualdad de Penrose y las posibles intepretaciones relativas al interior de los agujeros negros. El segundo capítulo se adentra en el estudio de escenarios prohibidos por la Relatividad General pero que resultan accesibles, y naturales, al considerar efectos cuánticos. Se centra en los agujeros de gusano y su relación con el entrelazamiento cuántico (a través de la dualidad “gauge/gravity”), así como en la imposibilidad de transformarse en máquinas del tiempo. El capítulo tercero es el que más avanza hacia el régimen cuántico de la gravedad, explorando el problema de las singularidades desnudas y la Hipótesis de la Censura Cósmica. Se muestra cómo la versión fuerte sale reforzada tras un análisis semiclásico, mientras que la versión débil requiere de nuevas reinterpretaciones para su adaptación a la nueva realidad cuántica. Finalmente se ofrece un resumen junto con una discusión adicional sobre la naturaleza de las singularidades desnudas, con un pequeño repaso sobre los avances en este campo y las posibles rutas que tomar, haciendo hincapié en el papel del colapso crítico gravitatorio y proponiendo una línea de investigación más allá de esta tesis. Bibliografía: [1] G. W. Gibbons and S. W. Hawking, “Action integrals and partition functions in quantum gravity,” Phys. Rev. D 15 (May, 1977) 2752–2756. https://link.aps.org/doi/10.1103/PhysRevD.15.2752.
Yearsley, James M. "Aspects of time in quantum theory". Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/9115.
Pełny tekst źródłaMosley, Shaun. "Real time dynamics". Thesis, University of Nottingham, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240232.
Pełny tekst źródłaKsiążki na temat "TIME QUANTUM"
’t Hooft, Gerard, Arthur Jaffe, Gerhard Mack, Pronob K. Mitter i Raymond Stora, red. Quantum Fields and Quantum Space Time. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1801-7.
Pełny tekst źródła't, Hooft G., North Atlantic Treaty Organization. Scientific Affairs Division. i NATO Advanced Study Institute on Quantum Fields and Quantum Space Time (1996 : Cargèse, France), red. Quantum fields and quantum space time. New York: Plenum Press, 1997.
Znajdź pełny tekst źródłaMuga, J. G., R. Sala Mayato i Í. L. Egusquiza, red. Time in Quantum Mechanics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-73473-4.
Pełny tekst źródłaCastell, Lutz, i Otfried Ischebeck, red. Time, Quantum and Information. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-10557-3.
Pełny tekst źródłaMuga, J. G., R. Sala Mayato i I. L. Egusquiza, red. Time in Quantum Mechanics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45846-8.
Pełny tekst źródła1961-, Muga J. G., Sala Mayato R. 1965- i Egusquiza I. L. 1965-, red. Time in quantum mechanics. Wyd. 2. Berlin: Springer, 2008.
Znajdź pełny tekst źródłaC, Althorpe Stuart, Soldán Pavel, Balint-Kurti Gabriel G, Daresbury Laboratory i Collaborative Computational Project on Molecular Quantum Dynamics., red. Time-dependent quantum dynamics. Warrington: Daresbury Laboratory, Collaborative Computational Project on Molecular Quantum Dynamics, 2001.
Znajdź pełny tekst źródłaQuantum processes. Singapore: World Scientific, 2011.
Znajdź pełny tekst źródłaBayfield, James E. Quantum evolution: An introduction to time-dependent quantum mechanics. New York: John Wiley, 1999.
Znajdź pełny tekst źródłaMuga, Gonzalo, Andreas Ruschhaupt i Adolfo Campo, red. Time in Quantum Mechanics II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03174-8.
Pełny tekst źródłaCzęści książek na temat "TIME QUANTUM"
Allday, Jonathan. "Quantum Considerations". W Space-time, 317–42. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9781315165141-14.
Pełny tekst źródłaSchwabl, Franz. "Time Dependent Phenomena". W Quantum Mechanics, 281–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02703-5_16.
Pełny tekst źródłaBusch, Paul, Pekka Lahti, Juha-Pekka Pellonpää i Kari Ylinen. "Time and Energy". W Quantum Measurement, 389–403. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43389-9_17.
Pełny tekst źródłaSchwabl, Franz. "Time Dependent Phenomena". W Quantum Mechanics, 287–310. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04840-5_16.
Pełny tekst źródłaSchwabl, Franz. "Time Dependent Phenomena". W Quantum Mechanics, 287–310. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03170-4_16.
Pełny tekst źródłaPohl, Martin. "Quantum fields". W Particles, Fields, Space-Time, 127–46. Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429331107-7.
Pełny tekst źródłaLock, Maximilian P. E., i Ivette Fuentes. "Relativistic Quantum Clocks". W Time in Physics, 51–68. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68655-4_5.
Pełny tekst źródłaCramer, John G. "Reversing Time". W The Quantum Handshake, 47–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24642-0_4.
Pełny tekst źródłaRaju, C. K. "Quantum-Mechanical Time". W Time: Towards a Consistent Theory, 161–89. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8376-3_10.
Pełny tekst źródłaSiddiqui, Shabnam. "Time-Dependent Perturbation Theory". W Quantum Mechanics, 189–207. Boca Raton : CRC Press, Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22074-7.
Pełny tekst źródłaStreszczenia konferencji na temat "TIME QUANTUM"
Oppenheim, Jonathan. "Quantum time". W GENERAL RELATIVITY AND RELATIVISTIC ASTROPHYSICS. ASCE, 1999. http://dx.doi.org/10.1063/1.1301593.
Pełny tekst źródłaZehra, Syedah Sadaf, John Costello, Peirgiorgio Nicolosi i Paddy Hayden. "Time-integrated and time-resolved VUV LIBS: a comparative study". W Quantum Technologies, redaktorzy Andrew J. Shields, Jürgen Stuhler i Miles J. Padgett. SPIE, 2018. http://dx.doi.org/10.1117/12.2306459.
Pełny tekst źródłaAHARONOV, YAKIR, Jeeva ANANDAN i Lev VAIDMAN. "QUANTUM TIME MACHINE". W Proceedings of the International Conference on Fundamental Aspects of Quantum Theory — to Celebrate 30 Years of the Aharonov-Bohm-Effect. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814439251_0029.
Pełny tekst źródłaHua, Yuanyuan, Konstantinos Bantounos, Ian Underwood, Robert Henderson i Danial Chitnis. "A Portable and Cost-effective Time-of-Flight System for Time-Domain Near-Infrared Spectroscopy". W Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/quantum.2023.qth2a.32.
Pełny tekst źródłaMunro, William J., Yanbao Zhang, Hsin-Pin Lo, Alan Mink, Takuya Ikuta, Toshimori Honjo i Hiroki Takesue. "A real-time low-latency certifiable QRNG". W Quantum Communications and Quantum Imaging XIX, redaktorzy Keith S. Deacon i Ronald E. Meyers. SPIE, 2021. http://dx.doi.org/10.1117/12.2593285.
Pełny tekst źródłaRahmouni, Anouar, Samprity Saha, Oliver Slattery i Thomas Gerrits. "Hyperspectral photon-counting optical time domain reflectometry". W Quantum Communications and Quantum Imaging XX, redaktorzy Keith S. Deacon i Ronald E. Meyers. SPIE, 2022. http://dx.doi.org/10.1117/12.2633451.
Pełny tekst źródłaDavis, Samantha I., Chang Li, Rahaf Youssef, Neil Sinclair, Raju Valivarthi i Maria Spiropulu. "Generation of Time-bin GHZ States". W Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/quantum.2023.qth4a.7.
Pełny tekst źródłaNowakowski, Marcin. "Quantum entanglement in time". W QUANTUM RETROCAUSATION III. Author(s), 2017. http://dx.doi.org/10.1063/1.4982771.
Pełny tekst źródłaJafarizadeh, Saber. "Continuous time quantum consensus & quantum synchronisation". W 2016 Australian Control Conference (AuCC). IEEE, 2016. http://dx.doi.org/10.1109/aucc.2016.7868219.
Pełny tekst źródłaGrübl, Gebhard. "Arrival time and backflow effect". W QUANTUM MECHANICS: Are There Quantum Jumps? - and On the Present Status of Quantum Mechanics. AIP, 2006. http://dx.doi.org/10.1063/1.2219361.
Pełny tekst źródłaRaporty organizacyjne na temat "TIME QUANTUM"
Bush, Stephen. TIME-SENSITIVE QUANTUM KEY DISTRIBUTION. Office of Scientific and Technical Information (OSTI), grudzień 2021. http://dx.doi.org/10.2172/1870109.
Pełny tekst źródłaChew, G. F. Space and time from quantum mechanics. Office of Scientific and Technical Information (OSTI), wrzesień 1992. http://dx.doi.org/10.2172/10163929.
Pełny tekst źródłaChew, G. F. Space and time from quantum mechanics. Office of Scientific and Technical Information (OSTI), wrzesień 1992. http://dx.doi.org/10.2172/6077034.
Pełny tekst źródłaLu, Chao. Simulation of Quantum Time-Frequency Transform Algorithms. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2005. http://dx.doi.org/10.21236/ada435027.
Pełny tekst źródłaSvetlichny, George Svetlichny. Quantum Information and the Problem of Time. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-9-2007-67-74.
Pełny tekst źródłaLeburton, Jean-Pierre. Quantum Transport and Scattering Time Engineering in Nanostructures. Fort Belvoir, VA: Defense Technical Information Center, listopad 2002. http://dx.doi.org/10.21236/ada413484.
Pełny tekst źródłaCao, Jianshu, i Gregory A. Voth. Semiclassical Approximations to Quantum Dynamical Time Correlation Functions. Fort Belvoir, VA: Defense Technical Information Center, październik 1995. http://dx.doi.org/10.21236/ada300432.
Pełny tekst źródłaCao, Jianshu, i Gregory A. Voth. A New Perspective on Quantum Time Correlation Functions. Fort Belvoir, VA: Defense Technical Information Center, listopad 1993. http://dx.doi.org/10.21236/ada272579.
Pełny tekst źródłaPan, Wei, John Reno i Julien Tranchida. Enhance coherence time in intensely driven quantum systems. Office of Scientific and Technical Information (OSTI), wrzesień 2020. http://dx.doi.org/10.2172/1670245.
Pełny tekst źródłaDanos, Michael. Chaos, dissipation, arrow of time, in quantum physics. Gaithersburg, MD: National Bureau of Standards, 1993. http://dx.doi.org/10.6028/nist.tn.1403.
Pełny tekst źródła