Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Time Finite Element Method.

Artykuły w czasopismach na temat „Time Finite Element Method”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Time Finite Element Method”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Yamada, T., i K. Tani. "Finite element time domain method using hexahedral elements". IEEE Transactions on Magnetics 33, nr 2 (marzec 1997): 1476–79. http://dx.doi.org/10.1109/20.582539.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Becker, Roland, Erik Burman i Peter Hansbo. "A finite element time relaxation method". Comptes Rendus Mathematique 349, nr 5-6 (marzec 2011): 353–56. http://dx.doi.org/10.1016/j.crma.2010.12.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hansbo, Peter. "A free-Lagrange finite element method using space-time elements". Computer Methods in Applied Mechanics and Engineering 188, nr 1-3 (lipiec 2000): 347–61. http://dx.doi.org/10.1016/s0045-7825(99)00157-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Feliziani, M., i E. Maradei. "Point matched finite element-time domain method using vector elements". IEEE Transactions on Magnetics 30, nr 5 (wrzesień 1994): 3184–87. http://dx.doi.org/10.1109/20.312614.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kobayashi, Osuke, Kazuhiko Adachi, Yohei Azuma, Atsushi Fujita i Eiji Kohmura. "64028 Computational Time Reduction for Neurosurgical Training System Based on Finite Element Method(Biomechanics)". Proceedings of the Asian Conference on Multibody Dynamics 2010.5 (2010): _64028–1_—_64028–7_. http://dx.doi.org/10.1299/jsmeacmd.2010.5._64028-1_.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Neda, Monika. "Discontinuous Time Relaxation Method for the Time-Dependent Navier-Stokes Equations". Advances in Numerical Analysis 2010 (3.10.2010): 1–21. http://dx.doi.org/10.1155/2010/419021.

Pełny tekst źródła
Streszczenie:
A high-order family of time relaxation models based on approximate deconvolution is considered. A fully discrete scheme using discontinuous finite elements is proposed and analyzed. Optimal velocity error estimates are derived. The dependence of these estimates with respect to the Reynolds number Re is , which is an improvement with respect to the continuous finite element method where the dependence is .
Style APA, Harvard, Vancouver, ISO itp.
7

Jin-Fa Lee, R. Lee i A. Cangellaris. "Time-domain finite-element methods". IEEE Transactions on Antennas and Propagation 45, nr 3 (marzec 1997): 430–42. http://dx.doi.org/10.1109/8.558658.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Steinbach, Olaf. "Space-Time Finite Element Methods for Parabolic Problems". Computational Methods in Applied Mathematics 15, nr 4 (1.10.2015): 551–66. http://dx.doi.org/10.1515/cmam-2015-0026.

Pełny tekst źródła
Streszczenie:
AbstractWe propose and analyze a space-time finite element method for the numerical solution of parabolic evolution equations. This approach allows the use of general and unstructured space-time finite elements which do not require any tensor product structure. The stability of the numerical scheme is based on a stability condition which holds for standard finite element spaces. We also provide related a priori error estimates which are confirmed by numerical experiments.
Style APA, Harvard, Vancouver, ISO itp.
9

Anees, Asad, i Lutz Angermann. "Time Domain Finite Element Method for Maxwell’s Equations". IEEE Access 7 (2019): 63852–67. http://dx.doi.org/10.1109/access.2019.2916394.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Chessa, Jack, i Ted Belytschko. "A local space–time discontinuous finite element method". Computer Methods in Applied Mechanics and Engineering 195, nr 13-16 (luty 2006): 1325–43. http://dx.doi.org/10.1016/j.cma.2005.05.022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Wang, Li, i Hongzhi Zhong. "A time finite element method for structural dynamics". Applied Mathematical Modelling 41 (styczeń 2017): 445–61. http://dx.doi.org/10.1016/j.apm.2016.09.017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Réthoré, J., A. Gravouil i A. Combescure. "A combined space-time extended finite element method". International Journal for Numerical Methods in Engineering 64, nr 2 (2005): 260–84. http://dx.doi.org/10.1002/nme.1368.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Chieh-Tsao Hwang i Ruey-Beei Wu. "Treating late-time instability of hybrid finite-element/finite-difference time-domain method". IEEE Transactions on Antennas and Propagation 47, nr 2 (1999): 227–32. http://dx.doi.org/10.1109/8.761061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Liu, Y., i X. Peng. "A large time incremental finite element method for finite deformation problem". Communications in Numerical Methods in Engineering 17, nr 11 (12.10.2001): 789–803. http://dx.doi.org/10.1002/cnm.449.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Kim, Jinkyu, Gary F. Dargush, Hwasung Roh, Jaeho Ryu i Dongkeon Kim. "Unified Space–Time Finite Element Methods for Dissipative Continua Dynamics". International Journal of Applied Mechanics 09, nr 02 (marzec 2017): 1750019. http://dx.doi.org/10.1142/s1758825117500193.

Pełny tekst źródła
Streszczenie:
Based upon the extended framework of Hamilton’s principle, unified space–time finite element methods for viscoelastic and viscoplastic continuum dynamics are presented, respectively. For numerical efficiency, mixed time-step algorithm in time- and displacement-based algorithm in space are adopted. Through analytical investigation, we demonstrate that the Newmark’s constant average acceleration method and the present method are the same for viscoelasticity. With spatial eight-node brick elements, some numerical simulations are undertaken to validate and investigate the performance of the present non-iterative space–time finite element method for viscoplasticity.
Style APA, Harvard, Vancouver, ISO itp.
16

Sacks, Z. S., i Jin-Fa Lee. "A finite-element time-domain method using prism elements for microwave cavities". IEEE Transactions on Electromagnetic Compatibility 37, nr 4 (1995): 519–27. http://dx.doi.org/10.1109/15.477336.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Kacprzyk, Z. "Third formulation of the space-time finite element method". IOP Conference Series: Materials Science and Engineering 1015, nr 1 (1.01.2021): 012005. http://dx.doi.org/10.1088/1757-899x/1015/1/012005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Van, Tri, i Aihua Wood. "A Time-Domain Finite Element Method for Maxwell's Equations". SIAM Journal on Numerical Analysis 42, nr 4 (styczeń 2004): 1592–609. http://dx.doi.org/10.1137/s0036142901387427.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Hara, T., T. Naito i J. Umoto. "Time-periodic finite element method for nonlinear diffusion equations". IEEE Transactions on Magnetics 21, nr 6 (listopad 1985): 2261–64. http://dx.doi.org/10.1109/tmag.1985.1064193.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Taggar, Karanvir, Emad Gad i Derek McNamara. "High-Order Unconditionally Stable Time-Domain Finite-Element Method". IEEE Antennas and Wireless Propagation Letters 18, nr 9 (wrzesień 2019): 1775–79. http://dx.doi.org/10.1109/lawp.2019.2929734.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Feng, L. B., P. Zhuang, F. Liu, I. Turner i Y. T. Gu. "Finite element method for space-time fractional diffusion equation". Numerical Algorithms 72, nr 3 (21.10.2015): 749–67. http://dx.doi.org/10.1007/s11075-015-0065-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Hong, Li, i Liu Ru-xun. "The space-time finite element method for parabolic problems". Applied Mathematics and Mechanics 22, nr 6 (czerwiec 2001): 687–700. http://dx.doi.org/10.1007/bf02435669.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Marinkovic, Dragan, i Manfred Zehn. "Survey of Finite Element Method-Based Real-Time Simulations". Applied Sciences 9, nr 14 (10.07.2019): 2775. http://dx.doi.org/10.3390/app9142775.

Pełny tekst źródła
Streszczenie:
The finite element method (FEM) has deservedly gained the reputation of the most powerful, highly efficient, and versatile numerical method in the field of structural analysis. Though typical application of FE programs implies the so-called “off-line” computations, the rapid pace of hardware development over the past couple of decades was the major impetus for numerous researchers to consider the possibility of real-time simulation based on FE models. Limitations of available hardware components in various phases of developments demanded remarkable innovativeness in the quest for suitable solutions to the challenge. Different approaches have been proposed depending on the demands of the specific field of application. Though it is still a relatively young field of work in global terms, an immense amount of work has already been done calling for a representative survey. This paper aims to provide such a survey, which of course cannot be exhaustive.
Style APA, Harvard, Vancouver, ISO itp.
24

Frasson, A. M. F., i H. E. Hernández-Figueroa. "Envelope full-wave 3D finite element time domain method". Microwave and Optical Technology Letters 35, nr 5 (25.10.2002): 351–54. http://dx.doi.org/10.1002/mop.10604.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Van, Tri, i Aihua Wood. "A Time-Domain Finite Element Method for Helmholtz Equations". Journal of Computational Physics 183, nr 2 (grudzień 2002): 486–507. http://dx.doi.org/10.1006/jcph.2002.7204.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Mukherjee, Shuvajit, S. Gopalakrishnan i Ranjan Ganguli. "Time domain spectral element-based wave finite element method for periodic structures". Acta Mechanica 232, nr 6 (15.03.2021): 2269–96. http://dx.doi.org/10.1007/s00707-020-02917-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Dodig, Hrvoje, Dragan Poljak i Mario Cvetković. "On the edge element boundary element method/finite element method coupling for time harmonic electromagnetic scattering problems". International Journal for Numerical Methods in Engineering 122, nr 14 (14.04.2021): 3613–52. http://dx.doi.org/10.1002/nme.6675.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Agrawal, Manish, i C. S. Jog. "A quadratic time finite element method for nonlinear elastodynamics within the context of hybrid finite elements". Applied Mathematics and Computation 305 (lipiec 2017): 203–20. http://dx.doi.org/10.1016/j.amc.2017.01.059.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Nguyen, Thanh Xuan, i Long Tuan Tran. "A simplified variant of the time finite element methods based on the shape functions of an axial finite bar". Journal of Science and Technology in Civil Engineering (STCE) - HUCE 15, nr 4 (31.10.2021): 42–53. http://dx.doi.org/10.31814/stce.huce(nuce)2021-15(4)-04.

Pełny tekst źródła
Streszczenie:
In the field of structural dynamics, the structural responses in the time domain are of major concern. There already exist many methods proposed previously including widely used direct time integration methods such as ones in the β-Newmark family, Houbolt’s method, and Runge-Kutta method. The time finite element methods (TFEM) that followed the well-posed variational statement for structural dynamics are found to bring about a superior accuracy even with large time steps (element sizes), when compared with the results from methods mentioned above. Some high-order time finite elements were derived with the procedure analogous to the conventional finite element methods. In the formulation of these time finite elements, the shape functions are like the ones for a (spatial) 2-order finite beam. In this article, a simplified variant for the TFEM is proposed where the shape functions similar to the ones for a (spatial) axial bar are used. The accuracy in the obtained results of some numerical examples is found to be comparable with the accuracy in the previous results.
Style APA, Harvard, Vancouver, ISO itp.
30

KUMAR, V., i R. METHA. "IMPACT SIMULATIONS USING SMOOTHED FINITE ELEMENT METHOD". International Journal of Computational Methods 10, nr 04 (23.04.2013): 1350012. http://dx.doi.org/10.1142/s0219876213500126.

Pełny tekst źródła
Streszczenie:
We present impact simulations with the Smoothed Finite Element Method (SFEM). Therefore, we develop the SFEM in the context of explicit dynamic applications based on diagonalized mass matrix. Since SFEM is not based on the isoparametric concept and is based on line integration rather than domain integration, it is very promising for events involving large deformations and severe element distortion as they occur in high dynamic events such as impacts. For some benchmark problems, we show that SFEM is superior to standard FEM for impact events. To our best knowledge, this is the first time SFEM is applied in the context of impact analysis based on explicit time integration.
Style APA, Harvard, Vancouver, ISO itp.
31

Dermentzoglou, Dimitrios, Myrta Castellino, Paolo De Girolamo, Maziar Partovi, Gerd-Jan Schreppers i Alessandro Antonini. "Crownwall Failure Analysis through Finite Element Method". Journal of Marine Science and Engineering 9, nr 1 (31.12.2020): 35. http://dx.doi.org/10.3390/jmse9010035.

Pełny tekst źródła
Streszczenie:
Several failures of recurved concrete crownwalls have been observed in recent years. This work aims to get a better insight within the processes underlying the loading phase of these structures due to non-breaking wave impulsive loading conditions and to identify the dominant failure modes. The investigation is carried out through an offline one-way coupling of computational fluid dynamics (CFD) generated wave pressure time series and a time-varying structural Finite Element Analysis. The recent failure of the Civitavecchia (Italy) recurved parapet is adopted as an explanatory case study. Modal analysis aimed to identify the main modal parameters such as natural frequencies, modal masses and modal shapes is firstly performed to comprehensively describe the dynamic response of the investigated structure. Following, the CFD generated pressure field time-series is applied to linear and non-linear finite element model, the developed maximum stresses and the development of cracks are properly captured in both models. Three non-linear analyses are performed in order to investigate the performance of the crownwall concrete class. Starting with higher quality concrete class, it is decreased until the formation of cracks is reached under the action of the same regular wave condition. It is indeed shown that the concrete quality plays a dominant role for the survivability of the structure, even allowing the design of a recurved concrete parapet without reinforcing steel bars.
Style APA, Harvard, Vancouver, ISO itp.
32

Abenius, E., i F. Edelvik. "Thin Sheet Modeling Using Shell Elements in the Finite-Element Time-Domain Method". IEEE Transactions on Antennas and Propagation 54, nr 1 (styczeń 2006): 28–34. http://dx.doi.org/10.1109/tap.2005.861554.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Musivand-Arzanfudi, M., i H. Hosseini-Toudeshky. "Moving least-squares finite element method". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 221, nr 9 (1.09.2007): 1019–36. http://dx.doi.org/10.1243/09544062jmes463.

Pełny tekst źródła
Streszczenie:
A new computational method here called moving least-squares finite element method (MLSFEM) is presented, in which the shape functions of the parametric elements are constructed using moving least-squares approximation. While preserving some excellent characteristics of the meshless methods such as elimination of the volumetric locking in near-incompressible materials and giving accurate strains and stresses near the boundaries of the problem, the computational time is decreased by constructing the meshless shape functions in the stage of creating parametric elements and then utilizing them for any new problem. Moreover, it is not necessary to have knowledge about the full details of the shape function generation method in future uses. The MLSFEM also eliminates another drawback of meshless methods associated with the lack of accordance between the integration cells and the problem boundaries. The method is described for two-dimensional problems, but it is extendable for three-dimensional problems too. The MLSFEM does not require the complex mesh generation. Excellent results can be obtained even using a simple mesh. A technique is also presented for isoparametric mapping which enables best possible mapping via a constrained optimization criterion. Several numerical examples are analysed to show the efficiency and convergence of the method.
Style APA, Harvard, Vancouver, ISO itp.
34

Wu, Sheng Bin, i Xiao Bao Liu. "A Material Selection Method Based on Finite Element Method". Advanced Materials Research 887-888 (luty 2014): 1013–16. http://dx.doi.org/10.4028/www.scientific.net/amr.887-888.1013.

Pełny tekst źródła
Streszczenie:
A new method for material selection in structure design based on the theory of the finite element method was presented. The method made material selection and structure design working at the same time. The mathematical model was established based on the finite element method. Finally, the material selection of an excavator's boom was verified, the results show that the proposed method is effective and feasible.
Style APA, Harvard, Vancouver, ISO itp.
35

Lou, Z., i J. M. Jin. "A New Explicit Time-Domain Finite-Element Method Based on Element-Level Decomposition". IEEE Transactions on Antennas and Propagation 54, nr 10 (październik 2006): 2990–99. http://dx.doi.org/10.1109/tap.2006.882178.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Sharma, Vikas, Kazunori Fujisawa i Akira Murakami. "Velocity-based time-discontinuous Galerkin space-time finite element method for elastodynamics". Soils and Foundations 58, nr 2 (kwiecień 2018): 491–510. http://dx.doi.org/10.1016/j.sandf.2018.02.015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

He, Siriguleng, Hong Li i Yang Liu. "Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations". Frontiers of Mathematics in China 8, nr 4 (11.05.2013): 825–36. http://dx.doi.org/10.1007/s11464-013-0307-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Liu, Yang, Hong Li i Siriguleng He. "Mixed time discontinuous space-time finite element method for convection diffusion equations". Applied Mathematics and Mechanics 29, nr 12 (grudzień 2008): 1579–86. http://dx.doi.org/10.1007/s10483-008-1206-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Lehrenfeld, Christoph, i Maxim Olshanskii. "An Eulerian finite element method for PDEs in time-dependent domains". ESAIM: Mathematical Modelling and Numerical Analysis 53, nr 2 (marzec 2019): 585–614. http://dx.doi.org/10.1051/m2an/2018068.

Pełny tekst źródła
Streszczenie:
The paper introduces a new finite element numerical method for the solution of partial differential equations on evolving domains. The approach uses a completely Eulerian description of the domain motion. The physical domain is embedded in a triangulated computational domain and can overlap the time-independent background mesh in an arbitrary way. The numerical method is based on finite difference discretizations of time derivatives and a standard geometrically unfitted finite element method with an additional stabilization term in the spatial domain. The performance and analysis of the method rely on the fundamental extension result in Sobolev spaces for functions defined on bounded domains. This paper includes a complete stability and error analysis, which accounts for discretization errors resulting from finite difference and finite element approximations as well as for geometric errors coming from a possible approximate recovery of the physical domain. Several numerical examples illustrate the theory and demonstrate the practical efficiency of the method.
Style APA, Harvard, Vancouver, ISO itp.
40

Matsuo, T., i M. Shimasaki. "Time-periodic finite-element method for hysteretic eddy-current analysis". IEEE Transactions on Magnetics 38, nr 2 (marzec 2002): 549–52. http://dx.doi.org/10.1109/20.996144.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Richter, Gerard R. "A finite element method for time-dependent convection-diffusion equations". Mathematics of Computation 54, nr 189 (1.01.1990): 81. http://dx.doi.org/10.1090/s0025-5718-1990-0993932-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Joseph, J., T. J. Sober, K. J. Gohn i A. Konrad. "Time domain analysis by the point-matched finite element method". IEEE Transactions on Magnetics 27, nr 5 (wrzesień 1991): 3852–55. http://dx.doi.org/10.1109/20.104942.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Mousavi, Seyed Reza, Iman Khalaji, Ali Sadeghi Naini, Kaamran Raahemifar i Abbas Samani. "Statistical finite element method for real-time tissue mechanics analysis". Computer Methods in Biomechanics and Biomedical Engineering 15, nr 6 (czerwiec 2012): 595–608. http://dx.doi.org/10.1080/10255842.2010.550889.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Hladky-Hennion, Anne-Christine, Régis Bossut i Michel de Billy. "Time analysis of immersed waveguides using the finite element method". Journal of the Acoustical Society of America 104, nr 1 (lipiec 1998): 64–71. http://dx.doi.org/10.1121/1.423284.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Kacprzyk, Zbigniew. "A Stationary Formulation of the Space-time Finite Element Method". Procedia Engineering 153 (2016): 248–55. http://dx.doi.org/10.1016/j.proeng.2016.08.110.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Li, Binjie, Hao Luo i Xiaoping Xie. "A space-time finite element method for fractional wave problems". Numerical Algorithms 85, nr 3 (4.01.2020): 1095–121. http://dx.doi.org/10.1007/s11075-019-00857-w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Zhang, Rui, Lihua Wen, Jinyou Xiao i Dong Qian. "An efficient solution algorithm for space–time finite element method". Computational Mechanics 63, nr 3 (14.07.2018): 455–70. http://dx.doi.org/10.1007/s00466-018-1603-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Rylander, Thomas, i Jian-Ming Jin. "Perfectly matched layer for the time domain finite element method". Journal of Computational Physics 200, nr 1 (październik 2004): 238–50. http://dx.doi.org/10.1016/j.jcp.2004.03.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

French, Donald A. "A space-time finite element method for the wave equation". Computer Methods in Applied Mechanics and Engineering 107, nr 1-2 (sierpień 1993): 145–57. http://dx.doi.org/10.1016/0045-7825(93)90172-t.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Zou, Guang-an. "Galerkin finite element method for time-fractional stochastic diffusion equations". Computational and Applied Mathematics 37, nr 4 (16.03.2018): 4877–98. http://dx.doi.org/10.1007/s40314-018-0609-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii