Gotowa bibliografia na temat „Time Finite Element Method”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Time Finite Element Method”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Time Finite Element Method"
Yamada, T., i K. Tani. "Finite element time domain method using hexahedral elements". IEEE Transactions on Magnetics 33, nr 2 (marzec 1997): 1476–79. http://dx.doi.org/10.1109/20.582539.
Pełny tekst źródłaBecker, Roland, Erik Burman i Peter Hansbo. "A finite element time relaxation method". Comptes Rendus Mathematique 349, nr 5-6 (marzec 2011): 353–56. http://dx.doi.org/10.1016/j.crma.2010.12.010.
Pełny tekst źródłaHansbo, Peter. "A free-Lagrange finite element method using space-time elements". Computer Methods in Applied Mechanics and Engineering 188, nr 1-3 (lipiec 2000): 347–61. http://dx.doi.org/10.1016/s0045-7825(99)00157-7.
Pełny tekst źródłaFeliziani, M., i E. Maradei. "Point matched finite element-time domain method using vector elements". IEEE Transactions on Magnetics 30, nr 5 (wrzesień 1994): 3184–87. http://dx.doi.org/10.1109/20.312614.
Pełny tekst źródłaKobayashi, Osuke, Kazuhiko Adachi, Yohei Azuma, Atsushi Fujita i Eiji Kohmura. "64028 Computational Time Reduction for Neurosurgical Training System Based on Finite Element Method(Biomechanics)". Proceedings of the Asian Conference on Multibody Dynamics 2010.5 (2010): _64028–1_—_64028–7_. http://dx.doi.org/10.1299/jsmeacmd.2010.5._64028-1_.
Pełny tekst źródłaNeda, Monika. "Discontinuous Time Relaxation Method for the Time-Dependent Navier-Stokes Equations". Advances in Numerical Analysis 2010 (3.10.2010): 1–21. http://dx.doi.org/10.1155/2010/419021.
Pełny tekst źródłaJin-Fa Lee, R. Lee i A. Cangellaris. "Time-domain finite-element methods". IEEE Transactions on Antennas and Propagation 45, nr 3 (marzec 1997): 430–42. http://dx.doi.org/10.1109/8.558658.
Pełny tekst źródłaSteinbach, Olaf. "Space-Time Finite Element Methods for Parabolic Problems". Computational Methods in Applied Mathematics 15, nr 4 (1.10.2015): 551–66. http://dx.doi.org/10.1515/cmam-2015-0026.
Pełny tekst źródłaAnees, Asad, i Lutz Angermann. "Time Domain Finite Element Method for Maxwell’s Equations". IEEE Access 7 (2019): 63852–67. http://dx.doi.org/10.1109/access.2019.2916394.
Pełny tekst źródłaChessa, Jack, i Ted Belytschko. "A local space–time discontinuous finite element method". Computer Methods in Applied Mechanics and Engineering 195, nr 13-16 (luty 2006): 1325–43. http://dx.doi.org/10.1016/j.cma.2005.05.022.
Pełny tekst źródłaRozprawy doktorskie na temat "Time Finite Element Method"
Valivarthi, Mohan Varma, i Hema Chandra Babu Muthyala. "A Finite Element Time Relaxation Method". Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-17728.
Pełny tekst źródłaAlpert, David N. "Enriched Space-Time Finite Element Methods for Structural Dynamics Applications". University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1377870451.
Pełny tekst źródłaKashefi, Ali. "A Finite-Element Coarse-GridProjection Method for Incompressible Flows". Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/79948.
Pełny tekst źródłaMaster of Science
Marais, Neilen. "Efficient high-order time domain finite element methods in electromagnetics". Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/1499.
Pełny tekst źródłaThe Finite Element Method (FEM) as applied to Computational Electromagnetics (CEM), can beused to solve a large class of Electromagnetics problems with high accuracy and good computational efficiency. For solving wide-band problems time domain solutions are often preferred; while time domain FEM methods are feasible, the Finite Difference Time Domain (FDTD) method is more commonly applied. The FDTD is popular both for its efficiency and its simplicity. The efficiency of the FDTD stems from the fact that it is both explicit (i.e. no matrices need to be solved) and second order accurate in both time and space. The FDTD has limitations when dealing with certain geometrical shapes and when electrically large structures are analysed. The former limitation is caused by stair-casing in the geometrical modelling, the latter by accumulated dispersion error throughout the mesh. The FEM can be seen as a general mathematical framework describing families of concrete numerical method implementations; in fact the FDTD can be described as a particular FETD (Finite Element Time Domain) method. To date the most commonly described FETD CEM methods make use of unstructured, conforming meshes and implicit time stepping schemes. Such meshes deal well with complex geometries while implicit time stepping is required for practical numerical stability. Compared to the FDTD, these methods have the advantages of computational efficiency when dealing with complex geometries and the conceptually straight forward extension to higher orders of accuracy. On the downside, they are much more complicated to implement and less computationally efficient when dealing with regular geometries. The FDTD and implicit FETD have been combined in an implicit/explicit hybrid. By using the implicit FETD in regions of complex geometry and the FDTD elsewhere the advantages of both are combined. However, previous work only addressed mixed first order (i.e. second order accurate) methods. For electrically large problems or when very accurate solutions are required, higher order methods are attractive. In this thesis a novel higher order implicit/explicit FETD method of arbitrary order in space is presented. A higher order explicit FETD method is implemented using Gauss-Lobatto lumping on regular Cartesian hexahedra with central differencing in time applied to a coupled Maxwell’s equation FEM formulation. This can be seen as a spatially higher order generalisation of the FDTD. A convolution-free perfectly matched layer (PML) method is adapted from the FDTD literature to provide mesh termination. A curl conforming hybrid mesh allowing the interconnection of arbitrary order tetrahedra and hexahedra without using intermediate pyramidal or prismatic elements is presented. An unconditionally stable implicit FETD method is implemented using Newmark-Beta time integration and the standard curl-curl FEM formulation. The implicit/explicit hybrid is constructed on the hybrid hexahedral/tetrahedral mesh using the equivalence between the coupled Maxwell’s formulation with central differences and the Newmark-Beta method with Beta = 0 and the element-wise implicitness method. The accuracy and efficiency of this hybrid is numerically demonstrated using several test-problems.
Johansson, August. "Duality-based adaptive finite element methods with application to time-dependent problems". Doctoral thesis, Umeå : Institutionen för matematik och matematisk statistik, Umeå universitet, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-33872.
Pełny tekst źródłaWang, Shumin. "Improved-accuracy algorithms for time-domain finite methods in electromagnetics". The Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=osu1061225243.
Pełny tekst źródłaVikas, Sharma. "Development of Space-Time Finite Element Method for Seismic Analysis of Hydraulic Structures". Kyoto University, 2018. http://hdl.handle.net/2433/235094.
Pełny tekst źródła0048
新制・課程博士
博士(農学)
甲第21374号
農博第2298号
新制||農||1066(附属図書館)
学位論文||H30||N5147(農学部図書室)
京都大学大学院農学研究科地域環境科学専攻
(主査)教授 村上 章, 教授 藤原 正幸, 教授 渦岡 良介
学位規則第4条第1項該当
Wang, Bao. "Numerical Simulation of Detonation Initiation by the Space-Time Conservation Element and Solution Element Method". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1293461692.
Pełny tekst źródłaCampbell-Kyureghyan, Naira Helen. "Computational analysis of the time-dependent biomechanical behavior of the lumbar spine". Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1095445065.
Pełny tekst źródłaTitle from first page of PDF file. Document formatted into pages; contains xix, 254 p.; also includes graphics. Includes bibliographical references (p. 234-254).
Dosopoulos, Stylianos. "Interior Penalty Discontinuous Galerkin Finite Element Method for the Time-Domain Maxwell's Equations". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1337787922.
Pełny tekst źródłaKsiążki na temat "Time Finite Element Method"
Farahani, Ali Reza Vashghani. 3D finite element time domain methods. Ottawa: National Library of Canada, 2003.
Znajdź pełny tekst źródłaLin-Jun, Hou, i Langley Research Center, red. Periodic trim solutions with hp-version finite elements in time: Final report. Atlanta, Ga: School of Aerospace Engineering, Georgia Institute of Technology, 1990.
Znajdź pełny tekst źródłaGolla, David Frank. Dynamics of viscoelastic structures: a time-domain finite element formulation. [Downsview, Ont.]: [Institute for Aerospace Studies], 1985.
Znajdź pełny tekst źródłaGolla, D. F. Dynamics of viscoelastic structures - a time-domain, finite element formulation. [S.l.]: [s.n.], 1985.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Division., red. Time-domain finite elements in optimal control with application to launch-vehicle guidance. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1991.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Division., red. Time-domain finite elements in optimal control with application to launch-vehicle guidance. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1991.
Znajdź pełny tekst źródłaGolla, David Frank. Dynamics of viscoelastic structures: A time-domain finite element formulation. [Downsview, Ont.]: Institute for Aerospace Studies, 1986.
Znajdź pełny tekst źródłaBless, Robert R. Time-domain finite elements in optimal control with application to launch-vehicle guidance. Hampton, Va: Langley Research Center, 1991.
Znajdź pełny tekst źródłaLi, Jichun. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Znajdź pełny tekst źródłaLi, Jichun, i Yunqing Huang. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33789-5.
Pełny tekst źródłaCzęści książek na temat "Time Finite Element Method"
Bajer, Czesław I., i Bartłomiej Dyniewicz. "Space-Time Finite Element Method". W Numerical Analysis of Vibrations of Structures under Moving Inertial Load, 123–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29548-5_6.
Pełny tekst źródłaRaiyan Kabir, S. M., B. M. A. Rahman i A. Agrawal. "Finite Element Time Domain Method for Photonics". W Recent Trends in Computational Photonics, 1–37. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55438-9_1.
Pełny tekst źródłaThomée, Vidar. "The Discontinuous Galerkin Time Stepping Method". W Galerkin Finite Element Methods for Parabolic Problems, 181–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03359-3_12.
Pełny tekst źródłaCardoso, José Roberto. "Finite Element Method for Time-Dependent Electromagnetic Fields". W Electromagnetics Through the Finite Element Method, 129–40. Boca Raton : Taylor & Francis, 2016. | “A CRC title.”: CRC Press, 2016. http://dx.doi.org/10.1201/9781315366777-5.
Pełny tekst źródłaLi, Jichun, i Yunqing Huang. "Introduction to Finite Element Methods". W Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 19–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_2.
Pełny tekst źródłaBangerth, Wolfgang, i Rolf Rannacher. "Time-Dependent Problems". W Adaptive Finite Element Methods for Differential Equations, 113–28. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-7605-6_9.
Pełny tekst źródłaWitkowski, M. "The Fundamentals of the Space-Time Finite Element Method". W Engineering Software IV, 281–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-21877-8_22.
Pełny tekst źródłaZahedi, Sara. "A Space-Time Cut Finite Element Method with Quadrature in Time". W Lecture Notes in Computational Science and Engineering, 281–306. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71431-8_9.
Pełny tekst źródłaLi, Jichun, i Yunqing Huang. "Time-Domain Finite Element Methods for Metamaterials". W Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 53–125. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_3.
Pełny tekst źródłaGriffiths, David F. "Finite Element Methods for Time Dependent Problems". W Astrophysical Radiation Hydrodynamics, 327–57. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4754-2_9.
Pełny tekst źródłaStreszczenia konferencji na temat "Time Finite Element Method"
Laroche, T., S. Ballandras, W. Daniau, J. Garcia, K. Dbich, M. Mayer, X. Perois i K. Wagner. "Simulation of finite acoustic resonators from Finite Element Analysis based on mixed Boundary Element Method/Perfectly Matched Layer". W 2012 European Frequency and Time Forum (EFTF). IEEE, 2012. http://dx.doi.org/10.1109/eftf.2012.6502364.
Pełny tekst źródłaCrawford, Zane D., Jie Li, Andrew Christlieb i B. Shanker. "Unconditionally stable time-domain mixed finite-element method". W 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2017. http://dx.doi.org/10.1109/apusncursinrsm.2017.8072937.
Pełny tekst źródłaVenkatarayalu, N., R. Lee, Yeow Beng Gan i Le-Wei Li. "Hanging variables in finite element time domain method with hexahedral edge elements". W 17th International Zurich Symposium on Electromagnetic Compatibility. IEEE, 2006. http://dx.doi.org/10.1109/emczur.2006.214900.
Pełny tekst źródłaGao, JingBo, MinQiang Xu i RiXin Wang. "Study About Real-Time Finite Element Method Using CNN". W ASME 2003 Pressure Vessels and Piping Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/pvp2003-1908.
Pełny tekst źródłaGedney, S. D., T. Kramer, C. Luo, J. A. Roden, R. Crawford, B. Guernsey, John Beggs i J. A. Miller. "The Discontinuous Galerkin Finite Element Time Domain method (DGFETD)". W 2008 IEEE International Symposium on Electromagnetic Compatibility - EMC 2008. IEEE, 2008. http://dx.doi.org/10.1109/isemc.2008.4652146.
Pełny tekst źródłaTuncer, O., B. Shanker i L. C. Kempel. "Development of time domain vector generalized finite element method". W 2011 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2011. http://dx.doi.org/10.1109/aps.2011.5997155.
Pełny tekst źródłaTaggar, Karanvir, Emad Gad i Derek McNamara. "High-order unconditionally stable time-domain finite element method". W 2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM). IEEE, 2018. http://dx.doi.org/10.1109/antem.2018.8572958.
Pełny tekst źródłaRahman, Azizur B. "Computationally Efficient Dual Perforated Finite Element Time Domain Method". W Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/iprsn.2013.im2b.3.
Pełny tekst źródłaSkotniczny, Marcin, Anna Paszynska i Maciej Paszynski. "ALGORITHM FOR FAST SIMULATIONS OF SPACE-TIME FINITE ELEMENT METHOD". W VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.1883.4831.
Pełny tekst źródłaKwon, Soonwook, Inderjit Chopra i Sung Lee. "Adaptive Finite Element in Time Method for Rotorcraft Analysis Using Element Size Control". W 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-1487.
Pełny tekst źródłaRaporty organizacyjne na temat "Time Finite Element Method"
Ewsuk, K. G., J. G. Arguello, Jr, D. H. Zeuch i A. F. Fossum. Real-Time Design of Improved Powder Pressing Dies Using Finite Element Method Modeling. Office of Scientific and Technical Information (OSTI), grudzień 2000. http://dx.doi.org/10.2172/773876.
Pełny tekst źródłaWhite, D., M. Stowell, J. Koning, R. Rieben, A. Fisher, N. Champagne i N. Madsen. Higher-Order Mixed Finite Element Methods for Time Domain Electromagnetics. Office of Scientific and Technical Information (OSTI), luty 2004. http://dx.doi.org/10.2172/15014733.
Pełny tekst źródłaDupont, T., R. Glowinski, W. Kinton i M. F. Wheeler. Mixed Finite Element Methods for Time Dependent Problems: Application to Control. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1989. http://dx.doi.org/10.21236/ada455261.
Pełny tekst źródłaRieben, Robert N. A Novel High Order Time Domain Vector Finite Element Method for the Simulation of Electromagnetic Devices. Office of Scientific and Technical Information (OSTI), styczeń 2004. http://dx.doi.org/10.2172/15014486.
Pełny tekst źródłaWhite, D. A. Discrete time vector finite element methods for solving maxwell`s equations on 3D unstructured grids. Office of Scientific and Technical Information (OSTI), wrzesień 1997. http://dx.doi.org/10.2172/16341.
Pełny tekst źródłaYan, Yujie, i Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, maj 2021. http://dx.doi.org/10.17760/d20410114.
Pełny tekst źródłaBabuska, Ivo, Uday Banerjee i John E. Osborn. Superconvergence in the Generalized Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2005. http://dx.doi.org/10.21236/ada440610.
Pełny tekst źródłaCoyle, J. M., i J. E. Flaherty. Adaptive Finite Element Method II: Error Estimation. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1994. http://dx.doi.org/10.21236/ada288358.
Pełny tekst źródłaBabuska, I., i J. M. Melenk. The Partition of Unity Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1995. http://dx.doi.org/10.21236/ada301760.
Pełny tekst źródłaGraville. L51764 Hydrogen Cracking in the Heat-Affected Zone of High-Strength Steels-Year 2. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), marzec 1997. http://dx.doi.org/10.55274/r0010170.
Pełny tekst źródła