Gotowa bibliografia na temat „Time-encoding of signals”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Time-encoding of signals”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Time-encoding of signals"
Petkov, Christopher I., i Daniel Bendor. "Neuronal Mechanisms and Transformations Encoding Time-Varying Signals". Neuron 91, nr 4 (sierpień 2016): 718–21. http://dx.doi.org/10.1016/j.neuron.2016.08.006.
Pełny tekst źródłaFlorescu, Dorian, i Daniel Coca. "A Novel Reconstruction Framework for Time-Encoded Signals with Integrate-and-Fire Neurons". Neural Computation 27, nr 9 (wrzesień 2015): 1872–98. http://dx.doi.org/10.1162/neco_a_00764.
Pełny tekst źródłaRijab, Khalida Shaaban, i Mohammed Abdul Redha Hussien. "Efficient electrocardiogram signal compression algorithm using dual encoding technique". Indonesian Journal of Electrical Engineering and Computer Science 25, nr 3 (1.03.2022): 1529. http://dx.doi.org/10.11591/ijeecs.v25.i3.pp1529-1538.
Pełny tekst źródłaCuadrado-Laborde, Christian. "Wavelength-division multiplexing Fresnel transform encoding of time-varying signals". Optical Engineering 47, nr 8 (1.08.2008): 085004. http://dx.doi.org/10.1117/1.2968216.
Pełny tekst źródłaKuo, Tung-Tai, Rong-Chin Lo, Ren-Guey Lee, Yuan-Hao Chen i Shang-Hsien Cai. "ACTIVITY COMMAND ENCODING OF CEREBRAL CORTEX M1-EVOKED POTENTIALS OF THE SPRAGUE DAWLEY RAT USING TIME DELAY NEURAL NETWORKS". Biomedical Engineering: Applications, Basis and Communications 32, nr 04 (29.07.2020): 2050034. http://dx.doi.org/10.4015/s1016237220500349.
Pełny tekst źródłaAdam, Karen, Adam Scholefield i Martin Vetterli. "Asynchrony Increases Efficiency: Time Encoding of Videos and Low-Rank Signals". IEEE Transactions on Signal Processing 70 (2022): 105–16. http://dx.doi.org/10.1109/tsp.2021.3133709.
Pełny tekst źródłaTealdi, Simone, Elsi Ferro, Carlo Cosimo Campa i Carla Bosia. "microRNA-Mediated Encoding and Decoding of Time-Dependent Signals in Tumorigenesis". Biomolecules 12, nr 2 (26.01.2022): 213. http://dx.doi.org/10.3390/biom12020213.
Pełny tekst źródłaCuadrado-Laborde, C., R. Duchowicz, R. Torroba i E. E. Sicre. "Fractional Fourier transform dual random phase encoding of time-varying signals". Optics Communications 281, nr 17 (wrzesień 2008): 4321–28. http://dx.doi.org/10.1016/j.optcom.2008.04.066.
Pełny tekst źródłaAdam, Karen, Adam Scholefield i Martin Vetterli. "Sampling and Reconstruction of Bandlimited Signals With Multi-Channel Time Encoding". IEEE Transactions on Signal Processing 68 (2020): 1105–19. http://dx.doi.org/10.1109/tsp.2020.2967182.
Pełny tekst źródłaMahmood, Sawsan D., Maha A. Hutaihit, Tamara A. Abdulrazaq, Azmi Shawkat Abdulbaqi i Nada Nasih Tawfeeq. "A Telemedicine based on EEG Signal Compression and Transmission". Webology 18, SI05 (30.10.2021): 894–913. http://dx.doi.org/10.14704/web/v18si05/web18270.
Pełny tekst źródłaRozprawy doktorskie na temat "Time-encoding of signals"
Devineni, Jaya Kartheek. "Ambient Backscatter Communication Systems: Design, Signal Detection and Bit Error Rate Analysis". Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/105041.
Pełny tekst źródłaDoctor of Philosophy
The emerging paradigm of Internet-of-Things (IoT) has the capability of radically transforming the human experience. At the heart of this technology are the smart edge devices that will monitor everyday physical processes, communicate regularly with the other nodes in the network chain, and automatically take appropriate actions when necessary. Naturally, many challenges need to be tackled in order to realize the true potential of this technology. Most relevant to this dissertation are the problems of powering potentially billions of such devices and enabling low-power communication among them. Ambient backscatter has emerged as a useful technology to handle the aforementioned challenges of the IoT networks due to its capability to support the simultaneous transfer of information and energy. This technology allows devices to harvest energy from the ambient signals in the environment thereby making them self-sustainable, and in addition provide carrier signals for information exchange. Using these attributes of ambient backscatter, the devices can operate at very low power which is an important feature when considering the reliability requirements of the IoT networks. That said, the ambient backscatter technology needs to overcome many challenges before its widespread adoption in IoT networks. For example, the range of backscatter is limited in comparison to the conventional communication systems due to self-interference from the power source at a receiver. In addition, the probability of detecting the data in error at the receiver, characterized by the bit error rate (BER) metric, in the presence of wireless multipath is generally poor in ambient backscatter due to double path loss and fading effects observed for the backscatter link. Inspired by this, the aim of this dissertation is to come up with new architecture designs for the transmitter and receiver devices that can improve the BER performance. The key contributions of the dissertation include the analytical derivations of BER which provide insights on the system design and the main parameters impacting the system performance. The exact design of the optimal detection technique for a communication system is dependent on the channel behavior, mainly the time-varying nature in the case of a flat fading channel. Depending on the mobility of devices and scatterers present in the wireless channel, it can either be described as time-selective or time-nonselective. In the time-nonselective channels, coherent detection that requires channel state information (CSI) estimation using pilot signals can be implemented for ambient backscatter. On the other hand, non-coherent detection is preferred when the channel is time-selective since the CSI estimation is not feasible in such scenarios. In the first part of this dissertation, we analyze the performance of ambient backscatter in a point-to-point single-link system for both time-nonselective and time-selective channels. In particular, we determine the BER performance of coherent and non-coherent detection techniques for ambient backscatter systems in this line of work. In addition, we investigate the possibility of improving the BER performance using multi-antenna and coding techniques. Our analyses demonstrate that the use of multi-antenna and coding can result in tremendous improvement of the performance and simplification of the detection procedure, respectively. In the second part of the dissertation, we study the performance of ambient backscatter in a large-scale network and compare it to that of the point-to-point single-link system. By leveraging tools from stochastic geometry, we analytically characterize the BER performance of ambient backscatter in a field of interfering devices modeled as a Poisson point process.
Rudresh, Sunil. "Sampling of Structured Signals: Techniques and Imaging Applications". Thesis, 2020. https://etd.iisc.ac.in/handle/2005/4616.
Pełny tekst źródłaKurchuk, Mariya. "Signal Encoding and Digital Signal Processing in Continuous Time". Thesis, 2011. https://doi.org/10.7916/D85T3SFB.
Pełny tekst źródłaSharma, Neeraj Kumar. "Information-rich Sampling of Time-varying Signals". Thesis, 2018. https://etd.iisc.ac.in/handle/2005/4126.
Pełny tekst źródłaKsiążki na temat "Time-encoding of signals"
Kurchuk, Mariya. Signal Encoding and Digital Signal Processing in Continuous Time. [New York, N.Y.?]: [publisher not identified], 2011.
Znajdź pełny tekst źródłaand, Bruno. A Multisensory Perspective. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198725022.003.0001.
Pełny tekst źródłaPaton, Susana, Enrique Prefasi, Dietmar Straeussnigg, Luis Hernandez i Pieter Rombouts. Time Encoding Circuits and Systems for Data Conversion and Signal Processing. Elsevier Science & Technology Books, 2019.
Znajdź pełny tekst źródłaLopes da Silva, Fernando H., i Eric Halgren. Neurocognitive Processes. Redaktorzy Donald L. Schomer i Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0048.
Pełny tekst źródłaCzęści książek na temat "Time-encoding of signals"
Gielen, Georges, Luis Hernandez-Corporales i Pieter Rombouts. "Time Based and VCO-ADCs from a Signal Processing Perspective". W Time-encoding VCO-ADCs for Integrated Systems-on-Chip, 3–23. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88067-5_1.
Pełny tekst źródłaRoy, Rohan Basu, Arani Roy, Amitava Mukherjee, Alekhya Ghosh, Soham Bhattacharyya i Mrinal K. Naskar. "Sparse Encoding Algorithm for Real-Time ECG Compression". W Recent Trends in Signal and Image Processing, 31–38. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8863-6_4.
Pełny tekst źródłaYolcu, Cem, Magnus Herberthson, Carl-Fredrik Westin i Evren Özarslan. "Magnetic Resonance Assessment of Effective Confinement Anisotropy with Orientationally-Averaged Single and Double Diffusion Encoding". W Mathematics and Visualization, 203–23. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56215-1_10.
Pełny tekst źródła"Compression of Bursty Signals Using Time Encoding Modulator". W International Conference on Software Technology and Engineering, 3rd (ICSTE 2011), 159–64. ASME Press, 2011. http://dx.doi.org/10.1115/1.859797.paper23.
Pełny tekst źródłaFestag, Sven, i Cord Spreckelsen. "Semantic Anomaly Detection in Medical Time Series". W German Medical Data Sciences: Bringing Data to Life. IOS Press, 2021. http://dx.doi.org/10.3233/shti210059.
Pełny tekst źródłaKatsigiannis, Stamos, Georgios Papaioannou i Dimitris Maroulis. "A Real-Time Video Encoding Scheme Based on the Contourlet Transform". W Design and Architectures for Digital Signal Processing. InTech, 2013. http://dx.doi.org/10.5772/51735.
Pełny tekst źródłaWitschey, Walter RT, i Michael Markl. "Blood flow and phase contrast CMR". W The EACVI Textbook of Cardiovascular Magnetic Resonance, redaktorzy Massimo Lombardi, Sven Plein, Steffen Petersen, Chiara Bucciarelli-Ducci, Emanuela R. Valsangiacomo Buechel, Cristina Basso i Victor Ferrari, 146–63. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198779735.003.0018.
Pełny tekst źródłaCéard-Falkenberg, Felix, Konstantin Kuznetsov, Alexander Prange, Michael Barz i Daniel Sonntag. "pEncode: A Tool for Visualizing Pen Signal Encodings in Real-Time". W HHAI2022: Augmenting Human Intellect. IOS Press, 2022. http://dx.doi.org/10.3233/faia220217.
Pełny tekst źródłaRosu, Marius, i Sever Pasca. "WBAN Based Long Term ECG Monitoring". W Wearable Technologies, 952–71. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5484-4.ch043.
Pełny tekst źródłaKamble, Shailesh D., Nileshsingh V. Thakur i Preeti R. Bajaj. "Fractal Coding Based Video Compression Using Weighted Finite Automata". W Research Anthology on Recent Trends, Tools, and Implications of Computer Programming, 232–52. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3016-0.ch011.
Pełny tekst źródłaStreszczenia konferencji na temat "Time-encoding of signals"
Rzepka, Dominik, Dariusz Koscielnik i Marek Miskowicz. "Clockless signal-dependent compressive sensing of multitone signals using time encoding machine". W 2017 3rd International Conference on Event-Based Control, Communication and Signal Processing (EBCCSP). IEEE, 2017. http://dx.doi.org/10.1109/ebccsp.2017.8022811.
Pełny tekst źródłaKamath, Abijith Jagannath, i Chandra Sekhar Seelamantula. "Multichannel Time-Encoding of Finite-Rate-of-Innovation Signals". W ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023. http://dx.doi.org/10.1109/icassp49357.2023.10096150.
Pełny tekst źródłaShevchenko, A., V. Zamyatin i I. Bondarenko. "Impulse Formation by Spatial-Time Phase Encoding". W 2006 3rd International Conference on Ultrawideband and Ultrashort Impulse Signals. IEEE, 2006. http://dx.doi.org/10.1109/uwbus.2006.307213.
Pełny tekst źródłaJutamulia, Suganda, Shinji Toyoda, Akihito Fujita i Eiichi Ito. "Real-time analog electronic pseudocolor encoding based on an optical processing method". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.tuaa3.
Pełny tekst źródłaAdam, Karen, Adam Scholefield i Martin Vetterli. "Multi-channel Time Encoding for Improved Reconstruction of Bandlimited Signals". W ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019. http://dx.doi.org/10.1109/icassp.2019.8682361.
Pełny tekst źródłaKromka, Jozef, Ondrej Kovac i Jan Saliga. "Lossless real-time signal encoding for two-channel signals: A case study on ECG". W 26th IMEKO TC4 International Symposium and 24th International Workshop on ADC/DAC Modelling and Testing. Budapest: IMEKO, 2023. http://dx.doi.org/10.21014/tc4-2023.06.
Pełny tekst źródłaKamath, Abijith Jagannath, i Chandra Sekhar Seelamantula. "Differentiate-and-Fire Time-Encoding of Finite-Rate-of-Innovation Signals". W ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022. http://dx.doi.org/10.1109/icassp43922.2022.9746159.
Pełny tekst źródłaAlexandru, Roxana, i Pier Luigi Dragotti. "Time encoding and decoding of multidimensional signals with finite rate of innovation". W 2021 55th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2021. http://dx.doi.org/10.1109/ieeeconf53345.2021.9723165.
Pełny tekst źródłaKong, Xiangming, Peter Petre, Roy Matic, Anna C. Gilbert i Martin J. Strauss. "An analog-to-information converter for wideband signals using a time encoding machine". W 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE). IEEE, 2011. http://dx.doi.org/10.1109/dsp-spe.2011.5739250.
Pełny tekst źródła"Optical encoding and multiplexing of detector signals with dual threshold time-over-threshold". W 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC). IEEE, 2013. http://dx.doi.org/10.1109/nssmic.2013.6829194.
Pełny tekst źródłaRaporty organizacyjne na temat "Time-encoding of signals"
Elizur, Abigail, Amir Sagi, Gideon Hulata, Clive Jones i Wayne Knibb. Improving Crustacean Aquaculture Production Efficiencies through Development of Monosex Populations Using Endocrine and Molecular Manipulations. United States Department of Agriculture, czerwiec 2010. http://dx.doi.org/10.32747/2010.7613890.bard.
Pełny tekst źródłaHarman, Gary E., i Ilan Chet. Enhancement of plant disease resistance and productivity through use of root symbiotic fungi. United States Department of Agriculture, lipiec 2008. http://dx.doi.org/10.32747/2008.7695588.bard.
Pełny tekst źródła