Gotowa bibliografia na temat „Tim22”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Tim22”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Tim22"
Muñoz-Gómez, Sergio A., Shannon N. Snyder, Samantha J. Montoya i Jeremy G. Wideman. "Independent accretion of TIM22 complex subunits in the animal and fungal lineages". F1000Research 9 (28.08.2020): 1060. http://dx.doi.org/10.12688/f1000research.25904.1.
Pełny tekst źródłaKoehler, Carla M., Michael P. Murphy, Nikolaus A. Bally, Danielle Leuenberger, Wolfgang Oppliger, Luisita Dolfini, Tina Junne, Gottfried Schatz i Eran Or. "Tim18p, a New Subunit of the TIM22 Complex That Mediates Insertion of Imported Proteins into the Yeast Mitochondrial Inner Membrane". Molecular and Cellular Biology 20, nr 4 (15.02.2000): 1187–93. http://dx.doi.org/10.1128/mcb.20.4.1187-1193.2000.
Pełny tekst źródłaKerscher, Oliver, Jason Holder, Maithreyan Srinivasan, Roxanne S. Leung i Robert E. Jensen. "The Tim54p–Tim22p Complex Mediates Insertion of Proteins into the Mitochondrial Inner Membrane". Journal of Cell Biology 139, nr 7 (29.12.1997): 1663–75. http://dx.doi.org/10.1083/jcb.139.7.1663.
Pełny tekst źródłaHwang, David K., Steven M. Claypool, Danielle Leuenberger, Heather L. Tienson i Carla M. Koehler. "Tim54p connects inner membrane assembly and proteolytic pathways in the mitochondrion". Journal of Cell Biology 178, nr 7 (24.09.2007): 1161–75. http://dx.doi.org/10.1083/jcb.200706195.
Pełny tekst źródłaVERGNOLLE, Maïlys A. S., Helen SAWNEY, Tina JUNNE, Luisita DOLFINI i Kostas TOKATLIDIS. "A cryptic matrix targeting signal of the yeast ADP/ATP carrier normally inserted by the TIM22 complex is recognized by the TIM23 machinery". Biochemical Journal 385, nr 1 (14.12.2004): 173–80. http://dx.doi.org/10.1042/bj20040650.
Pełny tekst źródłaKumar, Abhishek, Srujan Kumar Matta i Patrick D'Silva. "Conserved regions of budding yeast Tim22 have a role in structural organization of the carrier translocase". Journal of Cell Science 133, nr 14 (26.06.2020): jcs244632. http://dx.doi.org/10.1242/jcs.244632.
Pełny tekst źródłaWrobel, Lidia, Agata Trojanowska, Malgorzata E. Sztolsztener i Agnieszka Chacinska. "Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria". Molecular Biology of the Cell 24, nr 5 (marzec 2013): 543–54. http://dx.doi.org/10.1091/mbc.e12-09-0649.
Pełny tekst źródłaKurz, Martin, Heiko Martin, Joachim Rassow, Nikolaus Pfanner i Michael T. Ryan. "Biogenesis of Tim Proteins of the Mitochondrial Carrier Import Pathway: Differential Targeting Mechanisms and Crossing Over with the Main Import Pathway". Molecular Biology of the Cell 10, nr 7 (lipiec 1999): 2461–74. http://dx.doi.org/10.1091/mbc.10.7.2461.
Pełny tekst źródłaWeems, Ebony, Ujjal K. Singha, VaNae Hamilton, Joseph T. Smith, Karin Waegemann, Dejana Mokranjac i Minu Chaudhuri. "Functional Complementation Analyses Reveal that the Single PRAT Family Protein of Trypanosoma brucei Is a Divergent Homolog of Tim17 in Saccharomyces cerevisiae". Eukaryotic Cell 14, nr 3 (9.01.2015): 286–96. http://dx.doi.org/10.1128/ec.00203-14.
Pełny tekst źródłaHorten, Patrick, Lilia Colina-Tenorio i Heike Rampelt. "Biogenesis of Mitochondrial Metabolite Carriers". Biomolecules 10, nr 7 (7.07.2020): 1008. http://dx.doi.org/10.3390/biom10071008.
Pełny tekst źródłaRozprawy doktorskie na temat "Tim22"
Mühlenbein, Nicole. "Charakterisierung der mitochondrialen TIM22-Translokase des Menschen". Diss., lmu, 2004. http://nbn-resolving.de/urn:nbn:de:bvb:19-29299.
Pełny tekst źródłaAdam, Alexander. "Tim8 und Tim9, neue Komponenten der TIM22 Präproteintranslokase in Mitochondrien". Diss., lmu, 2004. http://nbn-resolving.de/urn:nbn:de:bvb:19-31385.
Pełny tekst źródłaEndres, Maxi. "Funktionelle Charakterisierung des Imports des ADP-ATP-Carriers über die TIM22-Translokase der mitochondrialen Innenmembran". [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963609351.
Pełny tekst źródłaEndres, Maxi. "Funktionelle Charakterisierung des Imports des ADP/ATP-Carriers über die TIM22-Translokase der mitochondrialen Innenmembran". Diss., lmu, 2000. http://nbn-resolving.de/urn:nbn:de:bvb:19-2204.
Pełny tekst źródłaVasiljev, Andreja. "Isolation and characterisation of the intermembrane space components of the mitochondrial TIM22 protein import machinery of Neurospora crassa". Diss., lmu, 2004. http://nbn-resolving.de/urn:nbn:de:bvb:19-28243.
Pełny tekst źródłaMapa, Koyeli. "Conformational Dynamics of the Mitochondrial TIM23 Preprotein Translocase". Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-104371.
Pełny tekst źródłaGlaser, Stephanie. "Structural and functional characterisation of Plasmodium falciparum Tic22". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610235.
Pełny tekst źródłaMokranjac, Dejana. "Structure and function of the mitochondrial TIM23 preprotein translocase". Diss., lmu, 2004. http://nbn-resolving.de/urn:nbn:de:bvb:19-23304.
Pełny tekst źródłaValença, Andreia Barbosa. "Analysis of TIM2 deficiency in the mouse retina". Doctoral thesis, Universidade de Lisboa, Faculdade de Medicina Veterinária, 2019. http://hdl.handle.net/10400.5/18022.
Pełny tekst źródłaCareful control of iron availability in the retina is central to maintenance of iron homeostasis, as its imbalance is associated with oxidative stress and progress of several retinopathies, such as diabetic retinopathy. Ferritin, known for its role in iron storage and detoxification, has also been proposed as an iron-transporter and can be regarded as a potential deliverer of a considerable large amount of iron to the retina compared to transferrin, the classical ironcarrier protein. Ferritin can bind to scavenger receptor class A member 5 (Scara5) and T-cell immunoglobulin and mucin-domain 2 (TIM2) receptors and is likely endocytosed. In this study, the presence of TIM2, which remained unknown in the retina, was investigated. Although no human ortholog for mouse TIM2 has been identified, human TIM1 and mouse TIM2 have similar functions. Our results revealed for the first time the presence of TIM2 receptors in the mouse retina, mainly expressed in Müller cells, unveiling new aspects of retinal iron metabolism regarding the putative role of TIM2 in this tissue. A knockout mouse for this membrane receptor was generated in order to better understand TIM2 functions in the retina. TIM2 deficiency affected retinal iron metabolism. Iron-loaded ferritin accumulation, probably due to increased ferritin uptake mediated by Scara5, and increased iron uptake by transferrin receptor 1 (TfR1)- transferrin binding led to retinal iron overload. Consequently, increased vascular permeability and blood-retinal barrier (BRB) breakdown were observed, inducing edema of the central retina. Paracellular and transcellular transports were impaired with tight junction integrity loss and increased caveolae number. Two mechanisms seem to be involved in this process: association of iron and ferritin overload with vascular endothelial growth factor (VEGF) overexpression and oxidative stress triggered by reactive oxygen species (ROS) overproduction generated by retinal iron overload. Altogether, these results point to TIM2 as a new key player in iron homeostasis in the mouse retina, possibly modulating cellular iron levels, and a potential target for the treatment of diabetic macular edema.
RESUMO - Análise da deficiência de TIM2 na retina de murganho - A retina necessita especificamente de ferro, devido a este ser um co-factor essencial da enzima guanilato ciclase que assegura a síntese de monofosfato de guanosina cíclico, segundo mensageiro na cascata de fototransdução. Para além disso, a retina é particularmente dependente de ferro devido à contínua necessidade de síntese de membranas, para suprir a constante renovação dos segmentos externos dos fotorrecetores, que requer como co-factor este elemento. Porém, o desequilíbrio da homeostasia do ferro está associado ao dano oxidativo e ao desenvolvimento de várias situações de retinopatia, como por exemplo a retinopatia diabética. A retina é particularmente propensa a stress oxidativo e o excesso de ferro exacerba potencialmente esta situação, devido à participação do ferro na reação de Fenton, que gera a superprodução de espécies reativas de oxigénio que, por sua vez, desencadeiam stress oxidativo. Por conseguinte, a manutenção da homeostasia do ferro é crucial neste tecido. Contudo, mecanismos de regulação do ferro na retina ainda não são completamente conhecidos. A retina obtém ferro a partir da circulação sanguínea. No entanto, a barreira hemato-retiana isola a retina da circulação sanguínea, protegendo-a de potenciais estímulos nocivos. Assim, são necessários mecanismos específicos e rigorosamente regulados de absorção de ferro para atravessar esta barreira e importar a quantidade de ferro estritamente essencial para o normal funcionamento da retina. Classicamente, a transferrina foi estabelecida como a proteína transportadora de ferro na retina, sendo aceite que a transferrina sérica se liga ao seu recetor de membrana, recetor da transferrina 1, na superfície das células endoteliais e do epitélio pigmentar da retina. Após a endocitose deste complexo, o ferro é libertado no parênquima retiniano. Mais recentemente, a ferritina, considerada classicamente como uma proteína de armazenamento de ferro e destoxificação, foi também proposta como uma proteína transportadora deste elemento. A vantagem da ferritina sérica em relação à transferrina no transporte de ferro prende-se na capacidade da ferritina de incorporar ~ 4,500 átomos de ferro, ao passo que a transferrina apenas transporta 2 átomos de ferro, constituindo, assim, a ferritina uma fonte muito eficiente de ferro para os tecidos. A molécula da ferritina é composta por 24 subunidades de dois tipos: cadeia leve (L) e cadeia pesada (H) que se unem aos recetores Scara5 (scavenger receptor class A member 5) e TIM2 (T-cell immunoglobulin and mucin-domain 2), respetivamente. O nosso grupo identificou pela primeira vez a presença de recetores Scara5 na retina humana e do murganho. No entanto, até à data, a presença de recetores TIM2 na retina não foi reportada na bibliografia. O TIM2, uma proteína transmembranar do tipo 1, é um membro da família de genes portadores dos domínios mucina e imunoglobulina de células T e, para além de ser um recetor para a ferritina-H, está envolvido na regulação da resposta imunitária...
N/A
Popov-Celeketic, Dusan. "Dynamic Regulation of Function of the Mitochondrial TIM23 Preprotein Translocase". Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-81728.
Pełny tekst źródłaKsiążki na temat "Tim22"
Chaykin, Howard Victor. Time2. Image Comics, 2022.
Znajdź pełny tekst źródłaCzęści książek na temat "Tim22"
Bobet, J.-L., B. Chevalier i B. Darriet. "Investigation of Hydrogen Sorption Properties of TiMn2 Based Alloys". W Hydrogen Materials Science and Chemistry of Metal Hydrides, 115–23. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0558-6_13.
Pełny tekst źródłaShiono, Takeshi, Hideaki Hagihara, Satoru Yoshida i Tomiki Ikeda. "Kinetic Features of Living Polymerization of Propene with the [t-BuNSiMe2Flu]TiMe2/B(C6F5)3 Catalyst". W Metalorganic Catalysts for Synthesis and Polymerization, 264–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60178-1_24.
Pełny tekst źródłaHinterseher, I., D. Krex, H. Bergert, E. Kuhlisch i H. D. Saeger. "Genomische Analyse der Tissue Inhibitors of Metalloproteinases 1 und 2 (TIMP1 und TIMP2) als potentielle ätiologische Faktoren spontaner Aortenaneurysmen". W Deutsche Gesellschaft für Chirurgie, 97–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18547-2_30.
Pełny tekst źródłaOktay, Yavuz, Robert N. Rainey i Carla M. Koehler. "The Function of TIM22 in the Insertion of Inner Membrane Proteins in Mitochondria". W Molecular Machines Involved in Protein Transport across Cellular Membranes, 367–85. Elsevier, 2007. http://dx.doi.org/10.1016/s1874-6047(07)25014-0.
Pełny tekst źródłaAyad, Shirley, Ray Boot-Handford, Martin J. Humphries, Karl E. Kadler i Adrian Shuttleworth. "TIMP2 tissue inhibitor of metalloproteinase-2". W The Extracellular Matrix FactsBook, 280–81. Elsevier, 1998. http://dx.doi.org/10.1016/b978-012068911-8.50179-2.
Pełny tekst źródłaIntaragamjon, Nawapom, Takeshi Shiono i Piyasan Praserthdama. "A comparative study ethylene/1-hexene copolymerization with [t-BuNSiMe2Flu]TiMe2 catalyst via various activators". W New Developments and Application in Chemical Reaction Engineering, 841–44. Elsevier, 2006. http://dx.doi.org/10.1016/s0167-2991(06)81728-3.
Pełny tekst źródłaDudek, Jan, Bernard Guiard i Peter Rehling. "The Role of the TIM23 Complex and Its Associated Motor Complex in Mitochondrial Protein Import". W Molecular Machines Involved in Protein Transport across Cellular Membranes, 387–411. Elsevier, 2007. http://dx.doi.org/10.1016/s1874-6047(07)25015-2.
Pełny tekst źródłaIntaragamjon, Nawaporn, Takeshi Shiono, Bunjerd Jongsomjit i Piyasan Praserthdam. "Effect of α-Olefins on Copolymerization of Ethylene and α-Olefin with [t-BuNSiMe2Flu]TiMe2 Catalyst". W Studies in Surface Science and Catalysis, 271–74. Elsevier, 2006. http://dx.doi.org/10.1016/s0167-2991(06)80469-6.
Pełny tekst źródłaShiono, Takeshi, Zhengguo Cai i Yuushou Nakayama. "Effects of Solvents in Living Polymerization of Propene with [t-BuNSiMe2(3,6-t-Bu2Flu)]TiMe2-MMAO Catalyst". W Studies in Surface Science and Catalysis, 47–52. Elsevier, 2006. http://dx.doi.org/10.1016/s0167-2991(06)80433-7.
Pełny tekst źródłaZhou, Jing. "Bridges Among Visualization, Aesthetics, and Technology". W Visual Approaches to Cognitive Education With Technology Integration, 101–20. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5332-8.ch007.
Pełny tekst źródłaStreszczenia konferencji na temat "Tim22"
"Preface: TIM20-21 Physics Conference". W PROCEEDINGS OF THE TIM20-21 PHYSICS CONFERENCE. AIP Publishing, 2023. http://dx.doi.org/10.1063/12.0017678.
Pełny tekst źródłaMacris, Chris G., Robert G. Ebel, Christopher B. Leyerle i John C. McCullough. "Phase Change Metallic Alloy TIM2 Performance and Reliability". W ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33702.
Pełny tekst źródłaKishii, Noriyuki, Katsuya Shirai, Shin-ichiro Tamura, Jun'etsu Seto, Katsumi Tokumaru, Satohiro Takagi, Tatsuo Arai i Hirochika Sakuragi. "Electron Transfer Reaction from Zinc(II)tetraphenylporphine to Dichloromethane". W Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.wd20.
Pełny tekst źródłaKearney, Andrew, Li Li i Sean Sanford. "Interaction between TIM1 and TIM2 for mechanical robustness of integrated heat spreader". W 2009 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. IEEE, 2009. http://dx.doi.org/10.1109/stherm.2009.4810778.
Pełny tekst źródłaPandey, J., J. L. Larson-Casey, L. Gu, C. He i A. B. Carter. "Abrogation of the TOM20-TIM23 Pathway Ameliorates NOX4-Induced Mitochondria ROS in Pulmonary Fibrosis". W American Thoracic Society 2022 International Conference, May 13-18, 2022 - San Francisco, CA. American Thoracic Society, 2022. http://dx.doi.org/10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a5238.
Pełny tekst źródłaPugacheva, Elena N., Sarah McLaughlin, Ryan Ice, Anuradha Rajulapati, Polina Kozyulina, Ryan Livengood, Varvara Kozyreva, Yuriy Loskutov, Alexey Ivanov i Scott Weed. "Abstract 2013: NEDD9 depletion leads to MMP14 inactivation by TIMP2 and prevents invasion and metastasis". W Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-2013.
Pełny tekst źródłaLu, Jun, Michelle C. Lin i Bernie Short. "Measuring and Optimizing Thermal Interface Material Performance for VR Heatsink Designs". W ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ipack2015-48146.
Pełny tekst źródłaSubramaniam, Ranjithkumar, Selvakumar Subramanian, Balachandar Krishnamurthy, Jegadeeshwaran Rakkiyannan, Sakthivel Gnanasekaran i Yogesh Bhalerao. "Brake fault diagnosis using histogram features and artificial immune recognition system (AIRS)". W PROCEEDINGS OF THE TIM20-21 PHYSICS CONFERENCE. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0149302.
Pełny tekst źródłaRaj, K. Mohith, M. Bhuvanesh, J. Dinesh i B. Anbarasu. "Optical flow and infrared sensor based indoor navigation system for micro aerial vehicle". W PROCEEDINGS OF THE TIM20-21 PHYSICS CONFERENCE. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0149178.
Pełny tekst źródłaMohamed, Ahmed Ushan, i Alexander Chee Hon Cheong. "Automated color sorting for material handling system". W PROCEEDINGS OF THE TIM20-21 PHYSICS CONFERENCE. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0148572.
Pełny tekst źródłaRaporty organizacyjne na temat "Tim22"
Rizzoni, Giorgio. GATE: Energy Efficient Vehicles for Sustainable Mobility-Project TI022- FinalReport. Office of Scientific and Technical Information (OSTI), luty 2018. http://dx.doi.org/10.2172/1422746.
Pełny tekst źródła