Artykuły w czasopismach na temat „TI02 COMPOSITE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „TI02 COMPOSITE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Shi, Dan, Zhi Li Zhang, De Cai Li, Qi Han i Tie Peng Xing. "Preparation and Photo-Catalysis Properties of Fe3O4/TiO2 Nanocomposite". Key Engineering Materials 512-515 (czerwiec 2012): 187–90. http://dx.doi.org/10.4028/www.scientific.net/kem.512-515.187.
Pełny tekst źródłaHui, Yang, Zhang Jiaqi i He Huan. "Preparation of carbon nanotubes/TiO2-polyvinylidene fluoride nanocomposites and composite films". Journal of Physics: Conference Series 2263, nr 1 (1.04.2022): 012001. http://dx.doi.org/10.1088/1742-6596/2263/1/012001.
Pełny tekst źródłaSvec, Pavol, i L’ubomír Caplovic. "Microstructure and mechanical properties of b4c-tib2 composites reactive sintered from B4C + TiO2 precursors". Processing and Application of Ceramics 16, nr 4 (2022): 358–66. http://dx.doi.org/10.2298/pac2204358s.
Pełny tekst źródłaWang, Gui Song, i Lin Geng. "Microstructure Formation Mechanism of (Al2O3+TiB2+Al3Ti)/Al Composites Fabricated by Reactive Hot Pressing". Key Engineering Materials 353-358 (wrzesień 2007): 1439–42. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.1439.
Pełny tekst źródłaKustiningsih, Indar, Fajariswaan Nurrahman, Hasby Ashyra Rinaldi, Ipah Ema Jumiati, Denni Kartika Sari i Jayanudin Jayanudin. "Synthesize Fe<sub>3</sub>O<sub>4</sub>-TiO<sub>2 </sub>Composite for Methyl Orange Photocatalytic Degradation". Materials Science Forum 1057 (31.03.2022): 129–35. http://dx.doi.org/10.4028/p-9q4ts9.
Pełny tekst źródłaNoviyanti, Atiek Rostika, Efa Nur Asyiah, Muhamad Diki Permana, Dina Dwiyanti, Suryana i Diana Rakhmawaty Eddy. "Preparation of Hydroxyapatite-Titanium Dioxide Composite from Eggshell by Hydrothermal Method: Characterization and Antibacterial Activity". Crystals 12, nr 11 (10.11.2022): 1599. http://dx.doi.org/10.3390/cryst12111599.
Pełny tekst źródłaNiyomwas, Sutham. "Synthesis of TiO2-B2O3-Al Based Porous Composites". Advanced Materials Research 626 (grudzień 2012): 1–5. http://dx.doi.org/10.4028/www.scientific.net/amr.626.1.
Pełny tekst źródłaYeh, Chun-Liang, i Fu-You Zheng. "Formation of TiB2–MgAl2O4 Composites by SHS Metallurgy". Materials 16, nr 4 (15.02.2023): 1615. http://dx.doi.org/10.3390/ma16041615.
Pełny tekst źródłada Rocha, Rosa Maria, i Francisco Cristóvão Lourenço de Melo. "Effect of TiO2 and TiB2 on Pressureless Sintering of B4C". Materials Science Forum 727-728 (sierpień 2012): 1022–27. http://dx.doi.org/10.4028/www.scientific.net/msf.727-728.1022.
Pełny tekst źródłaLi, Shaolin, Xiuhua Guo, Shengli Zhang, Jiang Feng, Kexing Song i Shuhua Liang. "Arc erosion behavior of TiB2/Cu composites with single-scale and dual-scale TiB2 particles". Nanotechnology Reviews 8, nr 1 (31.12.2019): 619–27. http://dx.doi.org/10.1515/ntrev-2019-0054.
Pełny tekst źródłaYeh, Chun-Liang, i Kuan-Ting Liu. "Synthesis of TiB2/TiC/Al2O3 and ZrB2/ZrC/Al2O3 Composites by Low-Exotherm Thermitic Combustion with PTFE Activation". Journal of Composites Science 6, nr 4 (7.04.2022): 111. http://dx.doi.org/10.3390/jcs6040111.
Pełny tekst źródłaXu, Shao Fan, Shao Ping Xu, Cheng Nan Zhu i Chuan Yong Yuan. "Preparation and Properties of Cf-TiB2-Cu-Graphite Composites". Advanced Materials Research 535-537 (czerwiec 2012): 8–13. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.8.
Pełny tekst źródłaBravo Barcenas, David Israel, Jorge Manuel Chávez Aguilar, Omar Jiménez Alemán, Luis Olmos Navarrete, Max Fernando Flores Jiménez, Marco Aurelio González Albarrán i Iván Gerardo Farias Velázquez. "Microstructure and Mechanical Properties of Ti-TiH2 Based Matrix Composites Reinforced with xTiB2 Particles Processed by Powder Metallurgy". Coatings 13, nr 3 (9.03.2023): 587. http://dx.doi.org/10.3390/coatings13030587.
Pełny tekst źródłaMaganti, Naga Venkata Ramesh, i Ravikanth Raju Potturi. "Investigation on Mechanical and Machinability Properties of Aluminium Metal Matrix Composite Reinforced with Titanium Oxide (TiO2) and Graphite (Gr) Particles". Trends in Sciences 20, nr 11 (25.08.2023): 5682. http://dx.doi.org/10.48048/tis.2023.5682.
Pełny tekst źródłaZhu, De Gui, Hong Liang Sun, Yu Shu Wang i Liang Hui Wang. "Oxidation Behaviors of TiB2-TiCX and TiB2-TiCX/15SiC Ceramics". Advanced Materials Research 105-106 (kwiecień 2010): 179–83. http://dx.doi.org/10.4028/www.scientific.net/amr.105-106.179.
Pełny tekst źródłaGoshkoderya, M. E., T. I. Bobkova, S. P. Bogdanov, A. V. Krasikov, M. V. Staritsyn i A. A. Kashirina. "Spraying wear-resistant coatings from clad powders TiB2/Ti and HfB2/Ti". Izvestiya. Ferrous Metallurgy 66, nr 1 (20.02.2023): 27–34. http://dx.doi.org/10.17073/0368-0797-2023-1-27-34.
Pełny tekst źródłaSvec, Pavol, Zuzana Gábrisová i Alena Brusilová. "Reactive sintering of B4c-TiB2 composites from B4 and TiO2 precursors". Processing and Application of Ceramics 14, nr 4 (2020): 329–35. http://dx.doi.org/10.2298/pac2004329s.
Pełny tekst źródłaSvec, Pavol, Zuzana Gábrisová i Alena Brusilová. "Reactive sintering of B4c-TiB2 composites from B4 and TiO2 precursors". Processing and Application of Ceramics 14, nr 4 (2020): 329–35. http://dx.doi.org/10.2298/pac2004329s.
Pełny tekst źródłaShajari, Shayeste, Elaheh Kowsari, Naemeh Seifvand, Farshad Boorboor Ajdari, Amutha Chinnappan, Seeram Ramakrishna, Gopalan Saianand, Mohammad Dashti Najafi, Vahid Haddadi-Asl i Soheil Abdpour. "Efficient Photocatalytic Degradation of Gaseous Benzene and Toluene over Novel Hybrid PIL@TiO2/m-GO Composites". Catalysts 11, nr 1 (15.01.2021): 126. http://dx.doi.org/10.3390/catal11010126.
Pełny tekst źródłaAhmad, Nur, Alfan Wijaya, Amri Amri, Erni Salasia Fitri, Fitri Suryani Arsyad, Risfidian Mohadi i Aldes Lesbani. "Catalytic Oxidative Desulfurization of Dibenzothiophene by Composites Based Ni/Al-Oxide". Science and Technology Indonesia 7, nr 3 (28.07.2022): 385–91. http://dx.doi.org/10.26554/sti.2022.7.3.385-391.
Pełny tekst źródłaKumar, G. B. Veeresh, P. S. Shivakumar Gouda, R. Pramod i C. S. P. Rao. "Synthesis and Characterization of TiO2 Reinforced Al6061 Composites". Advanced Composites Letters 26, nr 1 (styczeń 2017): 096369351702600. http://dx.doi.org/10.1177/096369351702600104.
Pełny tekst źródłaLi, Pengfei, Minxian Shi, Zongyi Deng, Pengkun Han, Tingli Yang, Rui Hu, Chuang Dong, Rui Wang i Jie Ding. "Achieving excellent oxidation resistance and mechanical properties of TiB2–B4C/carbon aerogel composites by quick-gelation and mechanical mixing". Nanotechnology Reviews 11, nr 1 (1.01.2022): 3031–41. http://dx.doi.org/10.1515/ntrev-2022-0489.
Pełny tekst źródłaHeltina, D., N. Adharianti, D. G. Randa i Komalasari. "Effect of Adding Fe3O4 in Graphene/TiO2/Fe3O4 Composite for Phenol Photodegradation Application". Journal of Physics: Conference Series 2049, nr 1 (1.10.2021): 012089. http://dx.doi.org/10.1088/1742-6596/2049/1/012089.
Pełny tekst źródłaLoganathan, P., A. Gnanavelbabu, K. Rajkumar i S. Ayyanar. "Microstructural Characteristics and Mechanical Behaviour of AA7075/TiB2 Composite". Materials Science Forum 979 (marzec 2020): 40–46. http://dx.doi.org/10.4028/www.scientific.net/msf.979.40.
Pełny tekst źródłaPan, Xiaoyan. "Study on preparation and properties of nanocrystalline TiO2/graphite photocatalytic composite by mechanochemistry". Journal of Physics: Conference Series 2539, nr 1 (1.07.2023): 012057. http://dx.doi.org/10.1088/1742-6596/2539/1/012057.
Pełny tekst źródłaZhu, He Guo, Jin Min, Da Chu i Huan Wang. "Study on the Reaction Mechanism of (α-Al2O3+TiB2+TiC)/Al Composites Fabricated by Al-TiO2-B4C System". Advanced Materials Research 150-151 (październik 2010): 84–87. http://dx.doi.org/10.4028/www.scientific.net/amr.150-151.84.
Pełny tekst źródłaSagara, Katsuhiro, Yun Lu i Dao Cheng Luan. "FEM Analysis on Thermoelectric Properties of Metal/TiO2–x Composites with Random Distribution of Metal Powder". Materials Science Forum 750 (marzec 2013): 130–33. http://dx.doi.org/10.4028/www.scientific.net/msf.750.130.
Pełny tekst źródłaMirjalili, Abolfazl, Ali Zamanian i Seyed Mohammad Mahdi Hadavi. "The effect of TiO2 nanotubes reinforcement on the mechanical properties and wear resistance of silica micro-filled dental composites". Journal of Composite Materials 53, nr 23 (19.12.2018): 3217–28. http://dx.doi.org/10.1177/0021998318818882.
Pełny tekst źródłaButylina, Svetlana, Ossi Martikka i Timo Kärki. "Effect of inorganic pigments on the properties of coextruded polypropylene-based composites". Journal of Thermoplastic Composite Materials 31, nr 1 (28.04.2016): 23–33. http://dx.doi.org/10.1177/0892705716646416.
Pełny tekst źródłaZhao, Shu Mao, i Ling Ran Zhao. "Mechanical Properties of Hot-Pressed B<sub>4</sub>C-TiB<sub>2</sub> Composites Synthesized from B<sub>4</sub>C-TiO<sub>2</sub> and B<sub>4</sub>C-TiC". Key Engineering Materials 902 (29.10.2021): 81–86. http://dx.doi.org/10.4028/www.scientific.net/kem.902.81.
Pełny tekst źródłaCheng, Eric Jian Feng, Hirokazu Katsui i Takashi Goto. "Lamellar and Rod-Like Eutectic Growth of TiB2-TiC-TiN Composites by Arc-Melting". Key Engineering Materials 616 (czerwiec 2014): 43–46. http://dx.doi.org/10.4028/www.scientific.net/kem.616.43.
Pełny tekst źródłaLuo, Yue, Xue Min Yan, Huan Yang i Gao Shen Su. "Hydrothermal Synthesis and Adsorption Proprieties of Titania-Active Carbon Composites". Advanced Materials Research 150-151 (październik 2010): 391–95. http://dx.doi.org/10.4028/www.scientific.net/amr.150-151.391.
Pełny tekst źródłaAmirzade-Iranaq, Mohammad Taher, Mahdi Omidi, Hamid Reza Bakhsheshi-Rad, Abbas Saberi, Somayeh Abazari, Nadia Teymouri, Farid Naeimi i in. "MWCNTs-TiO2 Incorporated-Mg Composites to Improve the Mechanical, Corrosion and Biological Characteristics for Use in Biomedical Fields". Materials 16, nr 5 (25.02.2023): 1919. http://dx.doi.org/10.3390/ma16051919.
Pełny tekst źródłaGemelli, Enori, Patrícia Borges da Silva Maia, Fabio Nery, Nelson Heriberto Almeida Camargo, Vinícius André Rodrigues Henriques, Jailson de Jesus i Priscila Ferraz Franczak. "Effect of Calcium Titanate and/or Titanium-Phosphides in the Properties of Titanium Composites for Implant Materials". Advanced Materials Research 906 (kwiecień 2014): 226–31. http://dx.doi.org/10.4028/www.scientific.net/amr.906.226.
Pełny tekst źródłaPijarn, Nuchanaporn, Hasan Seng, Tuwaeibroheng Toso i Chanatan Dissong. "TiO2-SiO2 Gel Photocatalytic Degradation of Methylene Blue and Composite Energy Gap Calculation". Key Engineering Materials 706 (sierpień 2016): 94–98. http://dx.doi.org/10.4028/www.scientific.net/kem.706.94.
Pełny tekst źródłaLi, Zhaoqing, Zhufeng Liu, Xiao Yang, Annan Chen, Peng Chen, Lei Yang, Chunze Yan i Yusheng Shi. "Enhanced Photocatalysis of Black TiO2/Graphene Composites Synthesized by a Facile Sol–Gel Method Combined with Hydrogenation Process". Materials 15, nr 9 (6.05.2022): 3336. http://dx.doi.org/10.3390/ma15093336.
Pełny tekst źródłaZhao, Guo Long, Chuan Zhen Huang, Han Lian Liu, Bin Zou, Hong Tao Zhu i Jun Wang. "Synthesis of Al2O3 Ceramics Matrix Composites by Thermal Explosion under Pressure and Hot Pressing". Advanced Materials Research 690-693 (maj 2013): 534–37. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.534.
Pełny tekst źródłaWahyuni, Sri, Eko Sri Kunarti, Respati Tri Swasono i Indriana Kartini. "Characterization and Photocatalytic Activity of TiO2(rod)-SiO2-Polyaniline Nanocomposite". Indonesian Journal of Chemistry 18, nr 2 (30.05.2018): 321. http://dx.doi.org/10.22146/ijc.22550.
Pełny tekst źródłaJang, Myung Geun, Choonglai Cho i Woo Nyon Kim. "Synergistic effects of hybrid conductive fillers on the electrical properties of carbon fiber pultruded polypropylene/polycarbonate composites prepared by injection molding". Journal of Composite Materials 51, nr 7 (28.07.2016): 1005–17. http://dx.doi.org/10.1177/0021998316658536.
Pełny tekst źródłaXu, Geng-fu, Yuval Carmel, Tayo Olorunyolemi, Isabel K. Lloyd i Otto C. Wilson. "Microwave sintering and properties of AlN/TiB2 composites". Journal of Materials Research 18, nr 1 (styczeń 2003): 66–76. http://dx.doi.org/10.1557/jmr.2003.0010.
Pełny tekst źródłaKikitsu, Shin Ichi, Takaaki Otsuka, Hidetoshi Miyazaki, Hisao Suzuki i Toshitaka Ota. "Fabrication and Evaluation of Arrayed Needle-Like TiO2 Particle – Transparent Resin Composite Films". Key Engineering Materials 484 (lipiec 2011): 177–82. http://dx.doi.org/10.4028/www.scientific.net/kem.484.177.
Pełny tekst źródłaLv, Yanan, Tao Li, Honglei Zhao, Xuepeng Li, Ying Bu i Yongxia Xu. "Preparation of nano-TiO2 composite photocatalytic material and its degradation performance on aldehydes". E3S Web of Conferences 213 (2020): 01009. http://dx.doi.org/10.1051/e3sconf/202021301009.
Pełny tekst źródłaWei, Fengjun, Bingli Pan i Juan Lopez. "The tribological properties study of carbon fabric/ epoxy composites reinforced by nano-TiO2 and MWNTs". Open Physics 16, nr 1 (31.12.2018): 1127–38. http://dx.doi.org/10.1515/phys-2018-0133.
Pełny tekst źródłaLiu, Xiongzhang, Xixi Li, Xue Lei, Deping Zhang, Zhijun Liu, Xueyuan Long i Rongzhou Gong. "Research on dielectric and microwave absorbing properties of TiO2/TiB2/Thermoplastic polyurethanes (TPU) composite materials". Journal of Physics: Conference Series 2248, nr 1 (1.04.2022): 012012. http://dx.doi.org/10.1088/1742-6596/2248/1/012012.
Pełny tekst źródłaKe, Ou Yang, Xie Shan i Xiao Ou Ma. "Preparation and Characterization of Photocatalytic TiO2/CdS Nanocomposite Loaded on Multi-Walled Carbon Nanotues (MWCNTs)". Applied Mechanics and Materials 184-185 (czerwiec 2012): 1114–19. http://dx.doi.org/10.4028/www.scientific.net/amm.184-185.1114.
Pełny tekst źródłaRamesh, Balasubramanian, Essmat Showman, S. A. Muhammed Abraar, Kuldeep Kumar Saxena, Mohammed Y. Tharwan, Naif Alsaadi, Sharaf Al Sofyani i Ammar H. Elsheikh. "Microstructure, Mechanical Characteristics, and Wear Performance of Spark Plasma Sintered TiB2–Si3N4 as Affected by B4N Doping". Materials 15, nr 20 (12.10.2022): 7096. http://dx.doi.org/10.3390/ma15207096.
Pełny tekst źródłaLü, Peng, Fang Yu i Hong Qiang Ru. "A Comparison between B4C-TiB2-Al Composite and B4C-Al Composite on Microstructure and Mechanical Properties". Applied Mechanics and Materials 66-68 (lipiec 2011): 255–59. http://dx.doi.org/10.4028/www.scientific.net/amm.66-68.255.
Pełny tekst źródłaGórny, Gabriela, Ludosław Stobierski, Paweł Rutkowski i Marian Rączka. "Effect of Processing Conditions on Microstructure of SiC-TiB2 Composite". Solid State Phenomena 197 (luty 2013): 250–55. http://dx.doi.org/10.4028/www.scientific.net/ssp.197.250.
Pełny tekst źródłaWang, Guo Feng, Ji Hong Zhang, Chunping Zhang i Kai Feng Zhang. "Densification and Mechanical Properties of B4C Based Composites Sintered by Reaction Hot-Pressing". Key Engineering Materials 434-435 (marzec 2010): 24–27. http://dx.doi.org/10.4028/www.scientific.net/kem.434-435.24.
Pełny tekst źródłaLuo, H. H., D. Z. Wang, H. X. Peng, Cheng Liu i C. K. Yao. "The Formation Process of the Microstructure of Al2O3-Al3Ti-Al In-Situ Composite". Microscopy and Microanalysis 3, S2 (sierpień 1997): 727–28. http://dx.doi.org/10.1017/s1431927600010527.
Pełny tekst źródła