Gotowa bibliografia na temat „THZ FREQUENCY”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „THZ FREQUENCY”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "THZ FREQUENCY"
Gu, Qun Jane, Zhiwei Xu, Heng-Yu Jian, Bo Pan, Xiaojing Xu, Mau-Chung Frank Chang, Wei Liu i Harold Fetterman. "CMOS THz Generator With Frequency Selective Negative Resistance Tank". IEEE Transactions on Terahertz Science and Technology 2, nr 2 (marzec 2012): 193–202. http://dx.doi.org/10.1109/tthz.2011.2181922.
Pełny tekst źródłaKleine-Ostmann, Thomas, Christian Jastrow, Kai Baaske, Bernd Heinen, Michael Schwerdtfeger, Uwe Karst, Henning Hintzsche, Helga Stopper, Martin Koch i Thorsten Schrader. "Field Exposure and Dosimetry in the THz Frequency Range". IEEE Transactions on Terahertz Science and Technology 4, nr 1 (styczeń 2014): 12–25. http://dx.doi.org/10.1109/tthz.2013.2293115.
Pełny tekst źródłaYablokov, Anton A., Vladimir A. Anfertev, Leonid S. Revin, Vladimir Yu Balakirev, Mariya B. Chernyaeva, Elena G. Domracheva, Aleksey V. Illyuk, Sergey I. Pripolzin i Vladimir L. Vaks. "Two-Frequency THz Spectroscopy for Analytical and Dynamical Research". IEEE Transactions on Terahertz Science and Technology 5, nr 5 (wrzesień 2015): 845–51. http://dx.doi.org/10.1109/tthz.2015.2463114.
Pełny tekst źródłaConsolino, Luigi, Malik Nafa, Michele De Regis, Francesco Cappelli, Saverio Bartalini, Akio Ito, Masahiro Hitaka i in. "Direct Observation of Terahertz Frequency Comb Generation in Difference-Frequency Quantum Cascade Lasers". Applied Sciences 11, nr 4 (4.02.2021): 1416. http://dx.doi.org/10.3390/app11041416.
Pełny tekst źródłaJarzab, Przemysław P., Kacper Nowak i Edward F. Plinski. "Frequency aspects of the THz photomixer". Optics Communications 285, nr 6 (marzec 2012): 1308–13. http://dx.doi.org/10.1016/j.optcom.2011.09.053.
Pełny tekst źródłaZhang, Xiao Yu, Zhong Xin Zheng, Xin Xing Li, Ren Bing Tan, Zhi Peng Zhang, Yu Zhou, Jian Dong Sun, Bao Shun Zhang i Hua Qin. "Terahertz Filter Based on Frequency Selective Surfaces". Advanced Materials Research 571 (wrzesień 2012): 362–66. http://dx.doi.org/10.4028/www.scientific.net/amr.571.362.
Pełny tekst źródłaYashchyshyn, Yevhen, i Konrad Godziszewski. "A New Method for Dielectric Characterization in Sub-THz Frequency Range". IEEE Transactions on Terahertz Science and Technology 8, nr 1 (styczeń 2018): 19–26. http://dx.doi.org/10.1109/tthz.2017.2771309.
Pełny tekst źródłaDickie, Raymond, Robert Cahill, Vincent Fusco, Harold S. Gamble i Neil Mitchell. "THz Frequency Selective Surface Filters for Earth Observation Remote Sensing Instruments". IEEE Transactions on Terahertz Science and Technology 1, nr 2 (listopad 2011): 450–61. http://dx.doi.org/10.1109/tthz.2011.2129470.
Pełny tekst źródłaLiu, Weilin, Jiejun Zhang, Maxime Rioux, Jeff Viens, Younes Messaddeq i Jianping Yao. "Frequency Tunable Continuous THz Wave Generation in a Periodically Poled Fiber". IEEE Transactions on Terahertz Science and Technology 5, nr 3 (maj 2015): 470–77. http://dx.doi.org/10.1109/tthz.2015.2412381.
Pełny tekst źródłaNazarov, Maxim, O. P. Cherkasova i A. P. Shkurinov. "Spectroscopy of solutions in the low frequency extended THz frequency range". EPJ Web of Conferences 195 (2018): 10008. http://dx.doi.org/10.1051/epjconf/201819510008.
Pełny tekst źródłaRozprawy doktorskie na temat "THZ FREQUENCY"
Parvex, Pichaida Taky. "Astrometric precision spectroscopy: Experimental development of a dual-frequency laser synthesizer based on an optical frequency comb". Tesis, Universidad de Chile, 2018. http://repositorio.uchile.cl/handle/2250/159288.
Pełny tekst źródłaLa tecnología de terahercios se encuentra en un estado de desarrollo atrasado con respecto a las tecnologías usadas en las bandas adyacentes, como la óptica infrarroja o la electróni- ca de microondas. En particular, no se poseen fuentes compactas de radiación que operen dentro esta banda logrando buenos niveles de potencia y amplios rangos de frecuencia. Las útiles propiedades de la radiación de terahercios como su capacidad de detectar moléculas complejas, buena resolución espacial y ser radiación no ionizante, hacen que el desarrollo de tecnología para esta banda sea un área con creciente interés. En el contexto del desarrollo de una nueva línea de investigación sobre espectroscopía molecular, en el Laboratorio de Terahertz y Astrofotónica de la Universidad de Chile, se realiza este trabajo que consiste en el desarrollo experimental de un sistema láser para la ali- mentación de fotomezcladores. Este sistema tiene como objetivo la generación de dos señales ópticas de alta estabilidad y coherencia, cuya diferencia de frecuencias puede ser ajustada de forma continua dentro del rango de 10 GHz a 300 GHz. Para esto, se utiliza un esquema basado en un peine de frecuencias óptico sobre el cual se enclava por inyección un láser de diodos de frecuencia sintonizable. Esto consigue tener una fuente infrarroja de alta precisión dentro de un gran rango. Además, se genera una segunda señal por medio de modulación en amplitud (AM), la cual es sintonizable dentro de un rango igual al espaciado producido por el peine óptico. En conjunto, estas señales logran abarcar un amplio espectro de frecuencias de forma continua sin perder estabilidad ni calidad de las señales. En este trabajo se logra implementar los subsistemas para la generación de cada una de las señales requeridas y se estudia la capacidad de estos para trabajar dentro del rango deseado. Para la señal generada por enclavamiento por inyección, se logra probar el concepto dentro de un rango reducido, principalmente por falta de un buen sistema de medición de altas frecuencias. Para la señal generada por modulación AM, se logran resultados positivos en todo el rango de diseño. Finalmente, se proponen modificaciones al sistema para mejorar su desempeño.
Este trabajo ha sido parcialmente financiado por Conicyt, a través de su fondo ALMA para el desarrollo de la astronomía, Proyecto 31140025, QUIMAL, Proyecto 1500010, CATA-Basal PFB06 y Fondecyt 1151213
Dolasinski, Brian David. "Nonlinear systems for frequency conversion from IR to RF". University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1417804168.
Pełny tekst źródłaSuizu, Koji, Kodo Kawase i 晃道 川瀬. "Monochromatic-Tunable Terahertz-Wave Sources Based on Nonlinear Frequency Conversion Using Lithium Niobate Crystal". IEEE, 2008. http://hdl.handle.net/2237/11170.
Pełny tekst źródłaWang, Cheng. "Wideband and fast THz spectrometer using dual-frequency-comb on CMOS". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118025.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 71-75).
Millimeter-wave/terahertz rotational spectroscopy of polar gaseous molecules provides a powerful tool for complicated gas mixture analysis. Here, a 220-to-320 GHz dual-frequency-comb spectrometer in 65-nm bulk CMOS is presented, along with a systematic analysis on fundamental issues of rotational spectrometer, including the impacts of various noise mechanisms, gas cell, molecular properties, detection sensitivity, etc. The spectrometer utilizes two counter-propagating frequency-comb signals to seamlessly scan the broadband spectrum. The comb signal, with 10 equally-spaced frequency tones, is generated and detected by a chain of inter-locked transceivers on chip. Each transceiver is based on a multi-functional electromagnetic structure, which serves as frequency doubler, sub-harmonic mixer and on-chip radiator simultaneously. In particular, theory and design methodology of a dual transmission line feedback scheme are presented, which maximizes the transistor gain near its cut-off frequency fmax. The dual-frequency-comb scheme does not only improve the scanning speed by 20 x, but also reduces the overall energy consumption to 90 mJ/point with 1 Hz bandwidth (or 0.5 s integration time). With its channelized 100-GHz scanning range and sub-kHz specificity, wide range of molecules can be detected. In the measurements, state-of-the-art total radiated power of 5.2 mW and single sideband noise figure (NF) of 14.6~19.5 dB are achieved, which further boost the scanning speed and sensitivity. Lastly, spectroscopic measurements for carbonyl sulfide (OCS) and acetonitrile (CH3CN) are presented. With a path length of 70 cm and 1 Hz bandwidth, the measured minimum detectable absorption coefficient reaches [alpha] gas,min=7 .2 x 10-7 cm- 1 . For OCS, that enables a minimum detectable concentration of 11 ppm. The predicted sensitivity for some other molecules reaches ppm level (e.g. 3 ppm for hydrogen cyanide (HCN)), or 10 ppt level if gas pre-concentration with a typical gain of 10 5 is used.
by Cheng Wang.
S.M.
Paquet, Romain. "Nouvelles sources lasers pour génération THz". Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTS017.
Pełny tekst źródłaThis work focuses on the design, realization and experimental study of highly coherent dual-frequency laser sources emitting at 1 µm for THz radiation generation by photomixing. We are particularly interested in vertical-external-cavity surface-emitting laser (VeCSEL), the aim being to obtain a robust dual-frequency continuous wave operation, based on simultaneous coexistence of two Laguerre-Gaussian transverse modes. We design intracavity transverse selective losses mask to select only the two Laguerre-Gaussian modes. The stable and simultaneous dual-frequency operation, the beat-frequency tunability range and the temporal coherence was specifically studied. We demonstrated THz emission by seeding a uni-travelling-carrier photodiode by an optically-pumped dual-frequency vertical-external-cavity surface-emitting
Cluff, Julian. "Time domain THz spectroscopy of semiconductors". Thesis, University of Bath, 2000. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311454.
Pełny tekst źródłaNiklas, Andrew John. "Characterization of Structured Nanomaterials using Terahertz Frequency Radiation". Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1347461386.
Pełny tekst źródłaThoma, Petra [Verfasser]. "Ultra-fast YBa2Cu3O7-x direct detectors for the THz frequency range / Petra Thoma". Karlsruhe : KIT Scientific Publishing, 2013. http://www.ksp.kit.edu.
Pełny tekst źródłaSung, Chieh. "Interaction of a relativistic electron beam with radiation in the THz frequency range". Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1679290761&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Pełny tekst źródłaWang, Yuekun. "In0.53Ga0.47As-In0.52Al0.48As multiple quantum well THz photoconductive switches and In0.53Ga0.47As-AlAs asymmetric spacer layer tunnel (ASPAT) diodes for THz electronics". Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/in053ga047asin052al048as-multiple-quantum-well-thz-photoconductive-switches-and-in053ga047asalas-asymmetric-spacer-layer-tunnel-aspat-diodes-for-thz-electronics(5fd73bd5-aef3-476b-be1b-7498da3f9627).html.
Pełny tekst źródłaKsiążki na temat "THZ FREQUENCY"
M, Schneider, i United States. National Bureau of Standards, red. p12sCp16sO laser frequency tables for the 34.2 to 62.3 THz (1139 to 2079 cmp-1s) region. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Znajdź pełny tekst źródłaM, Schneider, i United States. National Bureau of Standards, red. 12C16O laser frequency tables for the 34.2 to 62.3 THz (1139 to 2079 cm-1) region. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Znajdź pełny tekst źródłaM, Schneider, i United States. National Bureau of Standards., red. ¹²C¹⁶O laser frequency tables for the 34.2 to 62.3 THz (1139 to 2079 cm⁻¹) region. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Znajdź pełny tekst źródłaA, Dax, i National Institute of Standards and Technology (U.S.), red. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Znajdź pełny tekst źródłaA, Dax, i National Institute of Standards and Technology (U.S.), red. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Znajdź pełny tekst źródłaA, Dax, i National Institute of Standards and Technology (U.S.), red. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Znajdź pełny tekst źródłaA, Dax, i National Institute of Standards and Technology (U.S.), red. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Znajdź pełny tekst źródłaA, Dax, i National Institute of Standards and Technology (U.S.), red. Sub-Doppler frequency measurements on OCS at 87 THz (3.4 [micron]m) with the CO overtone laser: Considerations and details. Boulder, CO: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Znajdź pełny tekst źródłaFrequency dictionary English: ENG. [Leipzig]: Leipziger Universitätsverlag, 2012.
Znajdź pełny tekst źródłaThe Medusa frequency. London: Cape, 1987.
Znajdź pełny tekst źródłaCzęści książek na temat "THZ FREQUENCY"
Whitford, B. G. "Phase-Locked Frequency Chains to 130 THz at NRC". W Frequency Standards and Metrology, 187–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74501-0_34.
Pełny tekst źródłaSertel, Kubilay, i Georgios C. Trichopoulos. "Non-contact Metrology for mm-Wave and THz Electronics". W High-Frequency GaN Electronic Devices, 283–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_10.
Pełny tekst źródłaClairon, A., O. Acef, C. Chardonnet i C. J. Bordé. "State-of-the-Art for High Accuracy Frequency Standards in the 28 THz Range Using Saturated Absorption Resonances of OsO4 and CO2". W Frequency Standards and Metrology, 212–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74501-0_38.
Pełny tekst źródłaVieweg, Nico, Christian Jansen i Martin Koch. "Liquid Crystals and their Applications in the THz Frequency Range". W Terahertz Spectroscopy and Imaging, 301–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29564-5_12.
Pełny tekst źródłaLuo, Jun, Dong Wei i Xinyu Zhang. "Signal Sensing of Electrically Controlled Metamaterials Based on Terahertz Time-Domain Spectra (THz-TDS)". W Metamaterial-Based Optical and Radio Frequency Sensing, 137–63. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2965-8_8.
Pełny tekst źródłaÖzkan, Vedat Ali, Yıldız Menteşe, Taylan Takan, Asaf Behzat Şahin i Hakan Altan. "Compressive Sensing Imaging at Sub-THz Frequency in Transmission Mode". W NATO Science for Peace and Security Series B: Physics and Biophysics, 49–55. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1093-8_7.
Pełny tekst źródłaDebbarma, N., S. Debbarma, J. Pal i K. P. Ghatak. "Influence of THz Frequency on the Gate Capacitance in 2D QWFETs". W Lecture Notes in Electrical Engineering, 181–86. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6301-8_15.
Pełny tekst źródłaHellicar, Andrew D., Li Li, Kieran Greene, Greg Hislop, Stephen Hanham, Nasiha Nikolic i Jia Dn. "A 500-700 GHz System for Exploring the THz Frequency Regime". W Advances in Broadband Communication and Networks, 37–54. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003337089-2.
Pełny tekst źródłaSchevchenko, Yuliaa, Apostolos Apostolakis i Mauro F. Pereira. "Recent Advances in Superlattice Frequency Multipliers". W Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN, 101–16. Dordrecht: Springer Netherlands, 2021. http://dx.doi.org/10.1007/978-94-024-2082-1_8.
Pełny tekst źródłaBeard, M. C., G. M. Turner i C. A. Schmuttenmaer. "Low Frequency, Collective Solvent Dynamics Probed with Time-Resolved THz Spectroscopy". W ACS Symposium Series, 44–57. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0820.ch004.
Pełny tekst źródłaStreszczenia konferencji na temat "THZ FREQUENCY"
Kumagai, Motohiro, Shigeo Nagano, Yoshihisa Irimajiri, Yuko Hanado i Iwao Hosako. "Frequency calibration of distant THz quantum cascade laser by THz frequency reference transfer". W 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758852.
Pełny tekst źródłaCrowe, Thomas W., Brian Foley, Steve Durant, Kai Hui, Yiwei Duan i Jeffrey L. Hesler. "VNA frequency extenders to 1.1 THz". W 2011 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2011). IEEE, 2011. http://dx.doi.org/10.1109/irmmw-thz.2011.6105028.
Pełny tekst źródłaHu, F., W. J. Otter i S. Lucyszyn. "Optically tunable THz frequency metamaterial absorber". W 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015. http://dx.doi.org/10.1109/irmmw-thz.2015.7327423.
Pełny tekst źródłaScalari, Giacomo, Andres Forrer, Tudor Olariu, David Stark, Mattias Beck i Jerome Faist. "Broadband On-Chip Thz Frequency Combs". W 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018). IEEE, 2018. http://dx.doi.org/10.1109/irmmw-thz.2018.8510358.
Pełny tekst źródłaMezzapesa, Francesco P., Katia Garrasi, Valentino Pistore, Lianhe Li, A. Giles Davies, Edmund H. Linfield, Sukhdeep Dhillon i Miriam S. Vitiello. "THz quantum cascade laser frequency combs". W 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8874187.
Pełny tekst źródłaConsolino, L., S. Bartalini, A. Taschin, P. Bartolini, P. Cancio, M. De Pas, H. E. Beere i in. "THz spectroscopy with an absolute frequency scale by a QCL phase-locked to a THz frequency comb". W 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2013). IEEE, 2013. http://dx.doi.org/10.1109/irmmw-thz.2013.6665715.
Pełny tekst źródłaHayashi, Kenta, Hajime Inaba, Kaoru Minoshima i Takeshi Yasui. "THz frequency comb for precise frequency measurement of continuous-wave terahertz radiation". W 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2013). IEEE, 2013. http://dx.doi.org/10.1109/irmmw-thz.2013.6665714.
Pełny tekst źródłaPavelyev, Dmitry, Yuri Kochurinov, Yuan Ren, Jian Rong Gao, Niels Hovenier, Darren Hayton, Andrey Baryshev i Andrey Khudchenko. "Superlattice devices applications in THz frequency range". W 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2012). IEEE, 2012. http://dx.doi.org/10.1109/irmmw-thz.2012.6380134.
Pełny tekst źródłaHubers, Heinz-Wilhelm. "Heterodyne receivers for high frequency THz astrophysics". W 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6956070.
Pełny tekst źródłaWu, J., A. S. Mayorov, C. D. Wood, D. Mistry, L. H. Li, E. H. Linfield, A. G. Davies i J. E. Cunningham. "On-chip THz-frequency tuneable plasmonic circuits". W 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015. http://dx.doi.org/10.1109/irmmw-thz.2015.7327862.
Pełny tekst źródłaRaporty organizacyjne na temat "THZ FREQUENCY"
Kim, Sangwoo. Frequency Agile THz Detectors for Multiplicative Mixing. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2011. http://dx.doi.org/10.21236/ada552127.
Pełny tekst źródłaSchneider, M. [12C16O] laser frequency tables for the 34.2 to 62.3 THz (1139 to 2079 cm-1) region. Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nbs.tn.1321.
Pełny tekst źródłaDax, Adrien M. Sub-doppler frequency measurements on OCS at 87 THz (3.4 *m) with the CO overtone Laser:. Gaithersburg, MD: National Bureau of Standards, 1994. http://dx.doi.org/10.6028/nist.tn.1365.
Pełny tekst źródłaHsiao, Ming-Yen, Yoo Jin Choo, I.-Chun Liu, Boudier-Revéret Mathieu i Min Cheol Chang. Effect of Repetitive Transcranial Magnetic Stimulation on Post-stroke Dysphagia: Meta-analysis of Stimulation Frequency, Stimulation Site, and Timing of Outcome Measurement. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, kwiecień 2022. http://dx.doi.org/10.37766/inplasy2022.4.0005.
Pełny tekst źródłaLunsford, Kurt G. Business Cycles and Low-Frequency Fluctuations in the US Unemployment Rate. Federal Reserve Bank of Cleveland, sierpień 2023. http://dx.doi.org/10.26509/frbc-wp-202319.
Pełny tekst źródłaWalls, F. L., John Gary, Abbie O'Gallagher, Roland Sweet i Linda Sweet. Time domain frequency stability calculated from the frequency domain description :. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-3916.
Pełny tekst źródłaWalls, F. L., John Gary, Abbie O'Gallagher, Roland Sweet i Linda Sweet. Time domain frequency stability calculated from the frequency domain description :. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.89-3916r1991.
Pełny tekst źródłaRice, Michael, i Erik Perrins. On Frequency Offset Estimation Using the iNET Preamble in Frequency Selective Fading Channels. Fort Belvoir, VA: Defense Technical Information Center, marzec 2014. http://dx.doi.org/10.21236/ada622041.
Pełny tekst źródłaBerlinski, Samuel, Matías Busso, Taryn Dinkelman i Claudia Martínez. Research Insights: Can Low-Cost Communication Technologies Bridge Information Gaps between Schools and Parents? Inter-American Development Bank, październik 2021. http://dx.doi.org/10.18235/0003737.
Pełny tekst źródłaKlemetti, Wayne I., Paul A. Kossey, John E. Rasmussen i Maria Sueli Da Silveira Macedo Moura. VLF/LF (Very Low Frequency/Low Frequency) Reflection Properties of the Low Latitude Ionosphere. Fort Belvoir, VA: Defense Technical Information Center, luty 1988. http://dx.doi.org/10.21236/ada205976.
Pełny tekst źródła