Artykuły w czasopismach na temat „Thick Gas Electron Multiplier”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Thick Gas Electron Multiplier”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Orchard, G. M., K. Chin, W. V. Prestwich, A. J. Waker i S. H. Byun. "Development of a thick gas electron multiplier for microdosimetry". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 638, nr 1 (maj 2011): 122–26. http://dx.doi.org/10.1016/j.nima.2011.01.179.
Pełny tekst źródłaLi, Zhiyuan, Xianyun Ai, Yuguang Xie, Liliang Hao, Ying Wang, Hui Cui i Li Fu. "Study on gain stability of Thick Gas Electron Multiplier". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 986 (styczeń 2021): 164534. http://dx.doi.org/10.1016/j.nima.2020.164534.
Pełny tekst źródłaPutignano, O., A. Muraro, S. Cancelli, L. Giacomelli, G. Gorini, G. Grosso, M. H. Kushoro i in. "Design of a Thick Gas Electron Multiplier based photon pre-amplifier". Journal of Instrumentation 18, nr 06 (1.06.2023): C06003. http://dx.doi.org/10.1088/1748-0221/18/06/c06003.
Pełny tekst źródłaSong, Guofeng, Yiding Zhao, Ming Shao, Yi Zhou, Jianbei Liu i Zhiyong Zhang. "Construction and test of a transition-radiation detector prototype based on thick gas electron multiplier technology". Journal of Instrumentation 18, nr 01 (1.01.2023): P01024. http://dx.doi.org/10.1088/1748-0221/18/01/p01024.
Pełny tekst źródłaArsia, Rahim, Mohammad Kazem Salem, Ali Negarestani i Amir Hossein Sari. "A new approach to measure radon by Thick Gas Electron Multiplier". Radiation Physics and Chemistry 196 (lipiec 2022): 110114. http://dx.doi.org/10.1016/j.radphyschem.2022.110114.
Pełny tekst źródłaAlon, R., M. Cortesi, A. Breskin i R. Chechik. "Time resolution of a Thick Gas Electron Multiplier (THGEM)-based detector". Journal of Instrumentation 3, nr 11 (7.11.2008): P11001. http://dx.doi.org/10.1088/1748-0221/3/11/p11001.
Pełny tekst źródłaMir, J. A., H. Natal da Luz, X. Carvalho, C. D. R. Azevedo, J. M. F. dos Santos i F. D. Amaro. "Gain Characteristics of a 100 μm thick Gas Electron Multiplier (GEM)". Journal of Instrumentation 10, nr 12 (3.12.2015): C12006. http://dx.doi.org/10.1088/1748-0221/10/12/c12006.
Pełny tekst źródłaBernacci, M. R., i S. H. Byun. "Development of a thick gas electron multiplier-based beta-ray detector". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 954 (luty 2020): 161531. http://dx.doi.org/10.1016/j.nima.2018.10.209.
Pełny tekst źródłaChepel, V., G. Martinez-Lema, A. Roy i A. Breskin. "First results on FHM — a Floating Hole Multiplier". Journal of Instrumentation 18, nr 05 (1.05.2023): P05013. http://dx.doi.org/10.1088/1748-0221/18/05/p05013.
Pełny tekst źródłaOrchard, Gloria M., Silvia Puddu i Anthony J. Waker. "Design and function of an electron mobility spectrometer with a thick gas electron multiplier". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 815 (kwiecień 2016): 62–67. http://dx.doi.org/10.1016/j.nima.2016.01.055.
Pełny tekst źródłaHanu, A., S. H. Byun i W. V. Prestwich. "A Monte Carlo simulation of the microdosimetric response for thick gas electron multiplier". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 622, nr 1 (październik 2010): 270–75. http://dx.doi.org/10.1016/j.nima.2010.07.033.
Pełny tekst źródłaRoy, Promita, Vishal Kumar, Pralay Kumar Das, Purba Bhattacharya, Supratik Mukhopadhyay, Nayana Majumdar i Sandip Sarkar. "Charging up studies in thick Gas Electron Multipliers". Journal of Physics: Conference Series 2349, nr 1 (1.09.2022): 012015. http://dx.doi.org/10.1088/1742-6596/2349/1/012015.
Pełny tekst źródłaWang, Bin-Long, Qian Liu, Hong-Bang Liu, Xiao-Kang Zhou, Shi Chen, Dong-Sheng Ge, Wen-Qian Huang i in. "Ion Transportation Study for Thick Gas Electron Multipliers". Chinese Physics Letters 31, nr 12 (grudzień 2014): 122901. http://dx.doi.org/10.1088/0256-307x/31/12/122901.
Pełny tekst źródłaHassanpour, Mehdi, Saeedeh Khezripour, Mohammadreza Rezaie, Marzieh Hassanpour, Mohammad Rashed Iqbal Faruque i Mayeen Uddin Khandaker. "The efficacy of thick gas electron multiplier detector in measuring 14C for dating purpose". Radiation Physics and Chemistry 198 (wrzesień 2022): 110288. http://dx.doi.org/10.1016/j.radphyschem.2022.110288.
Pełny tekst źródłaAlon, R., J. Miyamoto, M. Cortesi, A. Breskin, R. Chechik, I. Carne, J. M. Maia i in. "Operation of a Thick Gas Electron Multiplier (THGEM) in Ar, Xe and Ar-Xe". Journal of Instrumentation 3, nr 01 (29.01.2008): P01005. http://dx.doi.org/10.1088/1748-0221/3/01/p01005.
Pełny tekst źródłaAnjomani, Z., A. R. Hanu, W. V. Prestwich i S. H. Byun. "Monte Carlo design study for thick gas electron multiplier-based multi-element microdosimetric detector". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 757 (wrzesień 2014): 67–74. http://dx.doi.org/10.1016/j.nima.2014.04.063.
Pełny tekst źródłaAnjomani, Z., A. R. Hanu, W. V. Prestwich i S. H. Byun. "Development of a multi-element microdosimetric detector based on a thick gas electron multiplier". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 847 (marzec 2017): 117–24. http://dx.doi.org/10.1016/j.nima.2016.11.051.
Pełny tekst źródłaArai, D., K. Ikematsu, A. Sugiyama, M. Iwamura, A. Koto, K. Katsuki, K. Fujii i T. Matsuda. "Development of Gating Foils To Inhibit Ion Feedback Using FPC Production Techniques". EPJ Web of Conferences 174 (2018): 02007. http://dx.doi.org/10.1051/epjconf/201817402007.
Pełny tekst źródłaLightfoot, P. K., G. J. Barker, K. Mavrokoridis, Y. A. Ramachers i N. J. C. Spooner. "Optical readout of secondary scintillation from liquid argon generated by a thick gas electron multiplier". Journal of Physics: Conference Series 179 (1.07.2009): 012014. http://dx.doi.org/10.1088/1742-6596/179/1/012014.
Pełny tekst źródłaRoque, R. C., H. Natal da Luz, L. F. N. D. Carramate, C. D. R. Azevedo, J. A. Mir i F. D. Amaro. "Spatial resolution properties of krypton-based mixtures using a 100 μm thick Gas Electron Multiplier". Journal of Instrumentation 13, nr 10 (9.10.2018): P10010. http://dx.doi.org/10.1088/1748-0221/13/10/p10010.
Pełny tekst źródłaYang, S., S. Das, B. Buck, C. Li, T. Ljubicic, R. Majka, M. Shao i in. "Cosmic ray test of mini-drift thick gas electron multiplier chamber for transition radiation detector". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 785 (czerwiec 2015): 33–39. http://dx.doi.org/10.1016/j.nima.2015.02.037.
Pełny tekst źródłaByun, Soo Hyun, Gloria M. Spirou, Andrei Hanu, William V. Prestwich i Anthony J. Waker. "Simulation and First Test of a Microdosimetric Detector Based on a Thick Gas Electron Multiplier". IEEE Transactions on Nuclear Science 56, nr 3 (czerwiec 2009): 1108–13. http://dx.doi.org/10.1109/tns.2008.2009214.
Pełny tekst źródłaMoslehi, Amir, i Gholamreza Raisali. "Simulated response of a multi-element thick gas electron multiplier-based microdosimeter to high energy neutrons". Applied Radiation and Isotopes 137 (lipiec 2018): 236–40. http://dx.doi.org/10.1016/j.apradiso.2018.03.027.
Pełny tekst źródłaAmaro, F. D., J. A. Mir, X. Carvalho, C. D. R. Azevedo, J. M. F. dos Santos i H. Natal da Luz. "A robust large area x-ray imaging system based on 100 μ m thick Gas Electron Multiplier". Journal of Instrumentation 10, nr 12 (3.12.2015): C12005. http://dx.doi.org/10.1088/1748-0221/10/12/c12005.
Pełny tekst źródłaKopylov, A. V., I. V. Orekhov, E. P. Petrov, V. V. Petukhov i A. A. Tikhonov. "Low-background thick-walled gas-electron multiplier for measuring alpha-, beta-, and X-rays of ultralow intensity". Technical Physics Letters 36, nr 7 (lipiec 2010): 592–94. http://dx.doi.org/10.1134/s1063785010070035.
Pełny tekst źródłaHu, Zhimeng, Andrea Muraro, Gabriele Croci, Oisin McCormack, Enrico Perelli Cippo, Marco Tardocchi, Xiaojuan Zhou i in. "Interpretation of effective gain variations with the drift electric field for a ceramic thick gas electron multiplier". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 988 (luty 2021): 164907. http://dx.doi.org/10.1016/j.nima.2020.164907.
Pełny tekst źródłaZhang, Weihua, Chunjuan Li, Yisheng Zou, Yina Liu i Hailong Luo. "THE DETERMINATION OF NEUTRON FLUENCE TO ABSORBED DOSE CONVERSION COEFFICIENTS AND RELATIVE BIOLOGICAL EFFECT BASED ON MICRODOSIMETRY MEASUREMENTS". Radiation Protection Dosimetry 187, nr 2 (28.06.2019): 262–67. http://dx.doi.org/10.1093/rpd/ncz160.
Pełny tekst źródłaLightfoot, P. K., G. J. Barker, K. Mavrokoridis, Y. A. Ramachers i N. J. C. Spooner. "Optical readout tracking detector concept using secondary scintillation from liquid argon generated by a thick gas electron multiplier". Journal of Instrumentation 4, nr 04 (1.04.2009): P04002. http://dx.doi.org/10.1088/1748-0221/4/04/p04002.
Pełny tekst źródłaBayev, V., K. Afanaciev, S. Movchan, A. Kashchuk, O. Levitskaya i V. Akulich. "Effect of multiple discharges on accumulated damage to the DLC anode layer of a resistive Well Electron Multiplier". Journal of Instrumentation 18, nr 06 (1.06.2023): C06004. http://dx.doi.org/10.1088/1748-0221/18/06/c06004.
Pełny tekst źródłaMoslehi, A., i G. Raisali. "A MULTI-ELEMENT THICK GAS ELECTRON MULTIPLIER-BASED MICRODOSEMETER FOR MEASUREMENT OF NEUTRONS DOSE-EQUIVALENT: A MONTE CARLO STUDY". Radiation Protection Dosimetry 176, nr 4 (14.03.2017): 404–10. http://dx.doi.org/10.1093/rpd/ncx024.
Pełny tekst źródłaCortesi, M., S. Rost, W. Mittig, Y. Ayyad-Limonge, D. Bazin, J. Yurkon i A. Stolz. "Multi-layer thick gas electron multiplier (M-THGEM): A new MPGD structure for high-gain operation at low-pressure". Review of Scientific Instruments 88, nr 1 (styczeń 2017): 013303. http://dx.doi.org/10.1063/1.4974333.
Pełny tekst źródłaChen, Shi, Hongbang Liu, Qian Liu, Yangheng Zheng, Binglong Wang, Wenqian Huang, Yang Dong i in. "One-dimensional parallax-free position-sensitive detector for diffraction measurements based on a home-made thin THGEM". Journal of Synchrotron Radiation 26, nr 1 (1.01.2019): 83–88. http://dx.doi.org/10.1107/s160057751801086x.
Pełny tekst źródłaIn’shakov, V. I., V. I. Kryshkin, V. V. Skvortsov, A. N. Sytin, N. A. Kuz’min i S. Ya Sychkov. "Development of the active element for detectors based on thick gas electron multipliers". Instruments and Experimental Techniques 53, nr 2 (marzec 2010): 172–74. http://dx.doi.org/10.1134/s002044121002003x.
Pełny tekst źródłaCortesi, Marco, Wolfgang Mittig, Daniel Bazin, Yassid Ayyad Limonge, Saul Beceiro-Novo, Rim Soussi Tanani, Michael Wolff, John Yurkon i Andreas Stolz. "Recent advances with a hybrid micro-pattern gas detector operated in low pressure H2 and He, for AT-TPC applications". EPJ Web of Conferences 174 (2018): 01007. http://dx.doi.org/10.1051/epjconf/201817401007.
Pełny tekst źródłaBhattacharya, Purba, Arijit Sen, Tilak Kumar Ghosh, Nayana Majumdar i Supratik Mukhopadhyay. "Development of THGEM-based Detectors for Nuclear Fission Studies". Journal of Physics: Conference Series 2374, nr 1 (1.11.2022): 012156. http://dx.doi.org/10.1088/1742-6596/2374/1/012156.
Pełny tekst źródłaDarvish-Molla, Sahar, William V. Prestwich i Soo Hyun Byun. "Development of an advanced two-dimensional microdosimetric detector based on THick Gas Electron Multipliers". Medical Physics 45, nr 3 (1.02.2018): 1241–54. http://dx.doi.org/10.1002/mp.12750.
Pełny tekst źródłaEldridge, C., N. J. C. Spooner, A. G. McLean, J. Burns, T. Crane, A. C. Ezeribe, R. R. Marcelo Gregorio i A. Scarff. "Directional dark matter readout with a novel multi-mesh ThGEM for SF6 negative ion operation". Journal of Instrumentation 18, nr 08 (1.08.2023): P08021. http://dx.doi.org/10.1088/1748-0221/18/08/p08021.
Pełny tekst źródłaCortesi, M., H. Sims, J. Pereira, Y. Ayyad, P. A. Majewski i I. Katsioulas. "Secondary scintillation properties of multi-layer THGEMs operated in low-pressure CF4 and Ar/5%Xe". Journal of Instrumentation 18, nr 08 (1.08.2023): P08005. http://dx.doi.org/10.1088/1748-0221/18/08/p08005.
Pełny tekst źródłaGarcía Ordóñez, Luis Guillermo, Maria Liz Crespo, Sergio Carrato, Andres Cicuttin, Werner Oswaldo Florian Samayoa, Daniele D’Ago i Stefano Levorato. "Multichannel Time Synchronization Based on PTP through a High Voltage Isolation Buffer Network Interface for Thick-GEM Detectors". Instruments 6, nr 1 (1.02.2022): 11. http://dx.doi.org/10.3390/instruments6010011.
Pełny tekst źródłaSaini, J., C. Ghosh, A. K. Dubey, Z. Ahammed, M. Mondal, R. Ganai, G. Sikder, V. Negi, S. Chattopadhyay i A. Chakrabarti. "Test and characterisation of STS/MuCh-XYTER and integration with multiple detectors of CBM-MuCh detector systems". Journal of Instrumentation 18, nr 01 (1.01.2023): P01009. http://dx.doi.org/10.1088/1748-0221/18/01/p01009.
Pełny tekst źródłaRazin, V. I. "A Thick Gas Electronic Multiplier". Instruments and Experimental Techniques 63, nr 2 (kwiecień 2020): 161–64. http://dx.doi.org/10.1134/s0020441220020153.
Pełny tekst źródłaRazin, V. I. "Metal Gas Electron Multiplier". Universal Journal of Physics and Application 8, nr 7 (sierpień 2014): 321–24. http://dx.doi.org/10.13189/ujpa.2014.020701.
Pełny tekst źródłaBouclier, R., M. Capeans, W. Dominik, M. Hoch, J. C. Labbe, G. Million, L. Ropelewski, F. Sauli i A. Sharma. "The gas electron multiplier (GEM)". IEEE Transactions on Nuclear Science 44, nr 3 (czerwiec 1997): 646–50. http://dx.doi.org/10.1109/23.603726.
Pełny tekst źródłaOvchinnikov, B. M., i V. V. Parusov. "A multichannel wire gas electron multiplier". Instruments and Experimental Techniques 53, nr 5 (wrzesień 2010): 653–56. http://dx.doi.org/10.1134/s0020441210050064.
Pełny tekst źródłaSauli, Fabio. "Imaging with the gas electron multiplier". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 580, nr 2 (październik 2007): 971–73. http://dx.doi.org/10.1016/j.nima.2007.06.100.
Pełny tekst źródłaBüttner, C., M. Capeáns, W. Dominik, M. Hoch, J. C. Labbé, G. Manzin, G. Million, L. Ropelewski, F. Sauli i A. Sharma. "Progress with the gas electron multiplier". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 409, nr 1-3 (maj 1998): 79–83. http://dx.doi.org/10.1016/s0168-9002(97)01240-0.
Pełny tekst źródłaSauli, Fabio. "Progress with the gas electron multiplier". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 522, nr 1-2 (kwiecień 2004): 93–98. http://dx.doi.org/10.1016/j.nima.2004.01.025.
Pełny tekst źródłaBenlloch, J., A. Bressan, C. Buttner, M. Capeans, M. Gruwe, M. Hoch, J. C. Labbe i in. "Development of the gas electron multiplier (GEM)". IEEE Transactions on Nuclear Science 45, nr 3 (czerwiec 1998): 234–43. http://dx.doi.org/10.1109/23.682386.
Pełny tekst źródłaKosolapov, D. S., B. M. Ovchinnikov, V. V. Parusov i V. I. Razin. "A gas electron multiplier with metal electrodes". Instruments and Experimental Techniques 56, nr 6 (listopad 2013): 684–85. http://dx.doi.org/10.1134/s0020441214010229.
Pełny tekst źródłaBressan, A., J. C. Labbé, P. Pagano, L. Ropelewski i F. Sauli. "Beam tests of the gas electron multiplier". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 425, nr 1-2 (kwiecień 1999): 262–76. http://dx.doi.org/10.1016/s0168-9002(98)01406-5.
Pełny tekst źródła