Gotowa bibliografia na temat „Thick Gas Electron Multiplier”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Thick Gas Electron Multiplier”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Thick Gas Electron Multiplier"
Orchard, G. M., K. Chin, W. V. Prestwich, A. J. Waker i S. H. Byun. "Development of a thick gas electron multiplier for microdosimetry". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 638, nr 1 (maj 2011): 122–26. http://dx.doi.org/10.1016/j.nima.2011.01.179.
Pełny tekst źródłaLi, Zhiyuan, Xianyun Ai, Yuguang Xie, Liliang Hao, Ying Wang, Hui Cui i Li Fu. "Study on gain stability of Thick Gas Electron Multiplier". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 986 (styczeń 2021): 164534. http://dx.doi.org/10.1016/j.nima.2020.164534.
Pełny tekst źródłaPutignano, O., A. Muraro, S. Cancelli, L. Giacomelli, G. Gorini, G. Grosso, M. H. Kushoro i in. "Design of a Thick Gas Electron Multiplier based photon pre-amplifier". Journal of Instrumentation 18, nr 06 (1.06.2023): C06003. http://dx.doi.org/10.1088/1748-0221/18/06/c06003.
Pełny tekst źródłaSong, Guofeng, Yiding Zhao, Ming Shao, Yi Zhou, Jianbei Liu i Zhiyong Zhang. "Construction and test of a transition-radiation detector prototype based on thick gas electron multiplier technology". Journal of Instrumentation 18, nr 01 (1.01.2023): P01024. http://dx.doi.org/10.1088/1748-0221/18/01/p01024.
Pełny tekst źródłaArsia, Rahim, Mohammad Kazem Salem, Ali Negarestani i Amir Hossein Sari. "A new approach to measure radon by Thick Gas Electron Multiplier". Radiation Physics and Chemistry 196 (lipiec 2022): 110114. http://dx.doi.org/10.1016/j.radphyschem.2022.110114.
Pełny tekst źródłaAlon, R., M. Cortesi, A. Breskin i R. Chechik. "Time resolution of a Thick Gas Electron Multiplier (THGEM)-based detector". Journal of Instrumentation 3, nr 11 (7.11.2008): P11001. http://dx.doi.org/10.1088/1748-0221/3/11/p11001.
Pełny tekst źródłaMir, J. A., H. Natal da Luz, X. Carvalho, C. D. R. Azevedo, J. M. F. dos Santos i F. D. Amaro. "Gain Characteristics of a 100 μm thick Gas Electron Multiplier (GEM)". Journal of Instrumentation 10, nr 12 (3.12.2015): C12006. http://dx.doi.org/10.1088/1748-0221/10/12/c12006.
Pełny tekst źródłaBernacci, M. R., i S. H. Byun. "Development of a thick gas electron multiplier-based beta-ray detector". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 954 (luty 2020): 161531. http://dx.doi.org/10.1016/j.nima.2018.10.209.
Pełny tekst źródłaChepel, V., G. Martinez-Lema, A. Roy i A. Breskin. "First results on FHM — a Floating Hole Multiplier". Journal of Instrumentation 18, nr 05 (1.05.2023): P05013. http://dx.doi.org/10.1088/1748-0221/18/05/p05013.
Pełny tekst źródłaOrchard, Gloria M., Silvia Puddu i Anthony J. Waker. "Design and function of an electron mobility spectrometer with a thick gas electron multiplier". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 815 (kwiecień 2016): 62–67. http://dx.doi.org/10.1016/j.nima.2016.01.055.
Pełny tekst źródłaRozprawy doktorskie na temat "Thick Gas Electron Multiplier"
Souza, Geovane Grossi Araújo de. "X-Ray fluorescence imaging system based on Thick-GEM detectors". Universidade de São Paulo, 2019. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-21032019-233121/.
Pełny tekst źródłaOs GEMs (Gas Electron Multiplier) e Thick-GEMs (Thick-Gas Electron Multiplier) são estruturas do tipo MPGD (Micropattern Gas Detector) que fazem parte da nova geração de detectores de radiação a gás e permitem altas taxas de contagens, baixo custo quando comparados com os detectores de estado sólido, uma elevada resistência à radiação e ganhos elevados, quando utilizadas estruturas múltiplas para multiplicação. Além disso, o manuseio e manutenção desses detectores é relativamente simples, sendo versáteis em relação à montagem podendo detectar diferentes tipos de radiação. Sendo assim, a utilização desses detectores é uma alternativa eficiente para montar um sistema de imagem com grande área sensível. Este trabalho consiste no estudo e caracterização de um conjunto de detectores gasosos, mais especificamente os Thick-GEMs produzidos pelo grupo de Física de altas energias e Instrumentação do IFUSP, que foram testados para serem empregados em um sistema de imagem de fluorescência de raios-X. Os Thick-GEMs testados apresentaram resultados promissores em termos de ganho, resolução em energia e estabilidade operacional. No entanto, devido à baixa relação sinal-ruído, um sistema de imagem de fluorescência de raios-X foi montado utilizando GEMs. Durante o trabalho as ferramentas de software necessárias para processamento e reconstrução de imagens foram desenvolvidas, assim como um estudo paralelo de simulações computacionais para entender melhor o funcionamento de detectores gasosos. Técnicas como o imageamento por fluorescência de raios-X são de suma importância pois são consideradas não invasivas e não destrutivas. Sua utilização tem uma importância imprescindível nas áreas da medicina e na análise de patrimônios histórico e cultural. Atualmente, a verificação e validação de autenticidade de obras é um requisito obrigatório e alguns museus começam a se interessar cada vez mais em áreas da Física e da instrumentação necessária para caracterizar o seu patrimônio.
Li, Mei. "The Gas Electron Multiplier, GEM, a new detector for scanned projection radiography". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ57774.pdf.
Pełny tekst źródłaLi, Mei Carleton University Dissertation Physics. "The gas electron multiplier (GEM): a new detector for scanned projection radiography". Ottawa, 2000.
Znajdź pełny tekst źródłaÖstling, Janina. "New Efficient Detector for Radiation Therapy Imaging using Gas Electron Multipliers". Doctoral thesis, Stockholm University, Medical Radiation Physics (together with KI), 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-857.
Pełny tekst źródłaCurrently film is being replaced by electronic detectors for portal imaging in radiation therapy. This development offers obvious advantages such as on-line quality assurance and digital images that can easily be accessed, processed and communicated. In spite of the improvements, the image quality has not been significantly enhanced, partly since the quantum efficiency compared to film is essentially the same, and the new electronic devices also suffer from sensitivity to the harsh radiation environment. In this thesis we propose a third generation electronic portal imaging device with increased quantum efficiency and potentially higher image quality.
Due to the parallel readout capability it is much faster than current devices, providing at least 200 frames per second (fps), and would even allow for a quality assurance and adaptive actions after each accelerator pulse. The new detector is also sensitive over a broader range of energies (10 keV - 50 MeV) and can be used to obtain diagnostic images immediately prior to the treatment without repositioning the patient. The imaging could be in the form of portal imaging or computed tomography. The new detector is based on a sandwich design containing several layers of Gas Electron Multipliers (GEMs) in combination with, or integrated with, perforated converter plates. The charge created by the ionizing radiation is drifted to the bottom of the assembly where a tailored readout system collects and digitizes the charge. The new readout system is further designed in such a way that no sensitive electronics is placed in the radiation beam and the detector is expected to be radiation resistant since it consists mainly of kapton, copper and gas.
A single GEM detector was responding linearly when tested with a 50 MV photon beam at a fluence rate of ~1010 photons mm-2 s-1 during 3-5 μs long pulses, but also with x-ray energies of 10-50 keV at a fluence rate of up to ~108 photons mm-2 s-1. The electron transmission of a 100 μm thick Cu plate with an optical transparency of ~46% was found to be ~15.4%, i.e. the effective hole transmission for the electrons was about one third of the hole area. A low effective GEM gain is enough to compensate for the losses in converters of this dimension. A prototype for the dedicated electronic readout system was designed with 50 x 100 pixels at a pitch of 1.27 mm x 1.27 mm. X-ray images were achieved with a single GEM layer and also in a double GEM setup with a converter plate interleaved. To verify the readout speed a Newton pendulum was imaged at a frame rate of 70 fps and alpha particles were imaged in 188 fps. The experimental studies indicates that the existing prototype can be developed as a competitive alternative for imaging in radiation therapy.
FALLAVOLLITA, FRANCESCO. "Tecnologia "Triple-Gas Electron Multiplier" per futuri aggiornamenti dell'esperimento CMS: costruzione e certificazione dei rivelatori CMS GE1/1 e studi di longevità". Doctoral thesis, Università degli studi di Pavia, 2019. http://hdl.handle.net/11571/1239046.
Pełny tekst źródłaStarling, Elizabeth Rose. "Detection and Mitigation of Propagating Electrical Discharges Within the Gas Electron Multiplier Detectors of the CMS Muon System for the CERN HL-LHC". Doctoral thesis, Universite Libre de Bruxelles, 2020. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/315833.
Pełny tekst źródłaDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Seydaliev, Marat Radikovich. "Development and Test of a GEM-Based TEPC for Neutron Protection Dosimetry". Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14607.
Pełny tekst źródłaForano, Claude. "Les conducteurs protoniques : HSbO3.nH2O ET SnO2.nH2O : caracterisation, etude rmn et applications". Clermont-Ferrand 2, 1987. http://www.theses.fr/1987CLF21069.
Pełny tekst źródłaGarai, Baishali. "Development and Performance Study of Thick Gas Electron Multiplier (THGEM) Based Radiation Detector". Thesis, 2013. http://etd.iisc.ernet.in/2005/3440.
Pełny tekst źródłaRoque, Rita Joana da Cruz. "X-ray imaging using 100 µm thick Gas Electron Multipliers operating in Kr-CO2 mixtures". Master's thesis, 2018. http://hdl.handle.net/10316/86285.
Pełny tekst źródłaO crípton é o gás nobre que possui os melhores valores de resolução espacial para energias entre 14−34 keV, o que o torna um bom candidato para aplicações de imagiologia. Além disso, a escolha de Gas Electron Multipliers (GEM) com 100 μm de espessura ao invés de um GEM standard representa uma vantagem inegável; os primeiros são mais robustos a descargas, atingindo coeficientes de multiplicação semelhantes. Combinando estas duas características, é possível atingir ganhos em carga mais elevados e melhores valores de resolução espacial, o que permite obter imagens mais detalhadas no intervalo de energias 14−34 keV. Uma cascata de dois GEMs não convencionais (com o dobro da espessura de um GEM standard) fabricados no CERN foi associada a uma placa resistiva de leitura bidimensional, com uma área ativa de 10×10 cm2 . Esta montagem permite recolher informação sobre a energia e a posição de cada evento usando apenas quatro canais, simplificando a eletrónica associada, bem como a própria reconstrução das imagens. Este detetor foi operado em misturas baseadas em crípton e irradiado com uma fonte de 55Fe e com uma fonte contínua de raios-x. Sempre que possível, os resultados foram comparados com as medidas obtidas com uma mistura Ar-CO2 (70:30). Parâmetros como ganho em carga, resolução em energia, relação sinal ruído das imagens, resolução espacial e resposta em contraste foram determinados nestas condições. Para as misturas baseadas em crípton, verificou-se uma redução na resolução espacial para energias acima dos 18 keV. O valor da MTF a 10% no intervalo de energias 22−24 keV foi também avaliado, sendo 0.5876(342) lp/cm para Ar-CO2 (70:30) e cerca de 3 lp/cm para misturas de Kr-CO2.
Krypton is known to have the best value of position resolution amongst the noble gases within the range 14−34 keV, which makes it a good candidate for imaging applications. Also, the choosing of 100 μm thick Gas Electron Multipliers (GEM) over the standard GEM plates presents an undeniable advantage as the former is more robust to sparking while achieving similar multiplication coefficients. By taking these factors into account, higher charge gains and lower values of position resolution can be achieved to produce cleaner imaging data in the energy range 14−34 keV. A cascade of two non-standard GEM plates (twice the thickness of a standard GEM) fabricated at CERN was coupled to a 2D resistive readout with an active area of 10×10 cm2. This setup allows event energy and interaction position information to be recorded using only four channels, simplifying the electronic system and the image reconstruction process. This detection system was operated in krypton-based mixtures and irradiated by a 55Fe and a continuous x-ray source. Whenever possible, the results were compared to the ones achieved in a Ar-CO2 (70:30) mixture. Parameters such as the charge gain, energy resolution, image signal-to-noise ratio, position resolution and contrast response were measured under the described conditions. For krypton-based mixtures, the reduction of position resolution happened for radiation energies higher than 18 keV. The Modulation Transfer Function value at 10% in the energy interval 22−24 keV was also evaluated, being 0.5876(342) lp/cm for Ar-CO2 (70:30) and around 3 lp/cm for Kr-CO2 mixtures.
Książki na temat "Thick Gas Electron Multiplier"
Vuure, T. L. Van. Thermal-neutron Detection Based on the Gas Electron Multiplier. Delft Univ Pr, 2004.
Znajdź pełny tekst źródłaFarahmand, Majid. Novel Tissue-equivalent Proportional Counter Based On A Gas Electron Multiplier. Delft Univ Pr, 2004.
Znajdź pełny tekst źródłaCzęści książek na temat "Thick Gas Electron Multiplier"
Malhotra, Shivali, Md Naimuddin, Ashok Kumar, Mohit Gola, Anshika Bansal i Aashaq Shah. "Various Studies with Gas Electron Multiplier (GEM) Detectors". W XXII DAE High Energy Physics Symposium, 105–8. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73171-1_22.
Pełny tekst źródłaGouma, P. I., i M. J. Mills. "Electron Microscopy of TiO2-based Thick Films for Gas Sensors". W Electron Microscopy and Analysis 1997, 491–94. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003063056-127.
Pełny tekst źródłaAhmad, Rizwan, Aashaq Shah, Ashok Kumar, Md Naimuddin, Mohit Gola i Shivali Malhotra. "Design and Development of Gas Leakage Station for Gas Electron Multiplier (GEM) Chamber". W XXII DAE High Energy Physics Symposium, 889–91. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73171-1_217.
Pełny tekst źródłaKumar, Hemant, Asar Ahmed, Mohit Gola, Rizwan Ahmed, Ashok Kumar i Md Naimuddin. "Design and Development of Gas Mixing Unit for Gas Electron Multiplier (GEM) Chamber". W Springer Proceedings in Physics, 1165–70. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4408-2_174.
Pełny tekst źródłaGola, Mohit. "Muon Chamber Endcap Upgrade of the CMS Experiment with Gas Electron Multiplier (GEM) Detectors and Their Performance". W XXII DAE High Energy Physics Symposium, 591–94. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73171-1_139.
Pełny tekst źródłaSharma, Ram Krishna, Md Naimuddin, Brian Dorney, Jeremie Alexandre Merlin, Archana Sharma, Marek Michal Gruchala, Priyanka Kumari i Ankita Mehta. "Test Beam Study of Gas Electron Multiplier (GEM) Detectors for the Upgrade of CMS Endcap Muon System". W XXII DAE High Energy Physics Symposium, 179–83. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73171-1_40.
Pełny tekst źródłaSugi, Haruo, Tsuyoshi Akimoto, Shigeru Chaen i Suechika Suzuki. "ATP-Induced Axial Movement of Myosin Heads in Living Thick Filaments Recorded with a Gas Environmental Chamber attached to the Electron Microscope". W Advances in Experimental Medicine and Biology, 53–62. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4684-6039-1_7.
Pełny tekst źródła"Gas Electron Multiplier". W Micro-Pattern Gaseous Detectors, 99–165. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811222221_0005.
Pełny tekst źródłaSauli, F. "Gas Electron Multiplier (GEM) Detectors: Principles of Operation and Applications". W Comprehensive Biomedical Physics, 367–408. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-444-53632-7.00625-0.
Pełny tekst źródłaStreszczenia konferencji na temat "Thick Gas Electron Multiplier"
Tamagawa, Toru, Asami Hayato, Yorito Yamaguchi, Hideki Hamagaki, Shigehira Hashimoto, Masahide Inuzuka, Hiromasa Miyasaka, Ikuya Sakurai, Fuyuki Tokanai i Kazuo Makishima. "Fine-pitch and thick-foil gas electron multipliers for cosmic x-ray polarimeters". W SPIE Astronomical Telescopes + Instrumentation, redaktorzy Martin J. L. Turner i Günther Hasinger. SPIE, 2006. http://dx.doi.org/10.1117/12.671244.
Pełny tekst źródłaPark, Seongtae, Edwin Baldelomar, Kwangjune Park, Mark Sosebee, Andy White, Jaehoon Yu, Floyd D. McDaniel i Barney L. Doyle. "Measurement Of Gas Electron Multiplier (GEM) Detector Characteristics". W APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY: Twenty-First International Conference. AIP, 2011. http://dx.doi.org/10.1063/1.3586087.
Pełny tekst źródłaPark, Kwang June, Edwin Baldeloma, Seongtae Park, Andrew P. White, Jaehoon Yu, Floyd D. McDaniel i Barney L. Doyle. "Radiation Effect On Gas Electron Multiplier Detector Performance". W APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY: Twenty-First International Conference. AIP, 2011. http://dx.doi.org/10.1063/1.3586188.
Pełny tekst źródłaRodriguez, S. Cesar A., S. Rafael M. Gutierrez i V. Andres E. Jaramillo. "Optical quality control of Gas Electron Multiplier foils". W 2014 XIX Symposium on Image, Signal Processing and Artificial Vision (STSIVA). IEEE, 2014. http://dx.doi.org/10.1109/stsiva.2014.7010155.
Pełny tekst źródłaKoike, Takahisa, Shoji Uno, Michiko Sekimoto, Takeshi Murakami, Masayoshi Shoji, Fukutarou Nagashima, Kenji Yamamoto, Eiichi Nakano i Tomohisa Uchida. "A new gamma camera with a Gas Electron Multiplier". W 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (2011 NSS/MIC). IEEE, 2011. http://dx.doi.org/10.1109/nssmic.2011.6152543.
Pełny tekst źródłaZheng, Feng, Hubert George i W. Kinzy Jones. "Simulation and Testing of Multi-Channel Electron Multiplier Using LTCC/Thick Silver Cofired Structures". W 2006 7th International Conference on Electronic Packaging Technology. IEEE, 2006. http://dx.doi.org/10.1109/icept.2006.359848.
Pełny tekst źródłaAbi Akl, Maya, Othmane Bouhali i Alfredo Castaneda. "Performance Of The Gas Electron Multiplier For Cms Muon Chambers Upgrade". W Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2014. http://dx.doi.org/10.5339/qfarc.2014.eepp0149.
Pełny tekst źródłaRemillard, Ronald A., Alan M. Levine, Edward A. Boughan, Hale V. Bradt, Edward H. Morgan, Ulrich J. Becker, Seppo A. A. Nenonen i Osmi R. Vilhu. "Gas electron multiplier (GEM) detectors for an advanced x-ray monitor". W International Symposium on Optical Science and Technology, redaktorzy Kathryn A. Flanagan i Oswald H. W. Siegmund. SPIE, 2000. http://dx.doi.org/10.1117/12.409152.
Pełny tekst źródłaKaneko, Kenta, i Takayoshi Kohmura. "Developments of gas electron multiplier for use hard X-ray detector". W SUZAKU 2011: Exploring the X-ray Universe: Suzaku and Beyond. AIP, 2012. http://dx.doi.org/10.1063/1.3696192.
Pełny tekst źródłaIzudike, Bright, Jaehoon Yu, Wei Chen, Xiankai Sun, Glen C. Balch i Mingwu Jin. "Feasibility study of direct beta particle detection using gas electron multiplier". W 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD). IEEE, 2016. http://dx.doi.org/10.1109/nssmic.2016.8069521.
Pełny tekst źródłaRaporty organizacyjne na temat "Thick Gas Electron Multiplier"
Yu, Jaehoon, Andy White, Seongtae Park, Changhie Hahn, Edwin Baldeloma, Nam Tran, Austin McIntire i Aria Soha. Gas Electron Multiplier (GEM) Chamber Characteristics Test. Office of Scientific and Technical Information (OSTI), styczeń 2011. http://dx.doi.org/10.2172/1022784.
Pełny tekst źródłaWoody, Craig, i Michael Furey. Commercial and Cost Effective Production of Gas Electron Multiplier (GEM) Foils. Office of Scientific and Technical Information (OSTI), marzec 2009. http://dx.doi.org/10.2172/1001785.
Pełny tekst źródłaCrary, David. Commercial and cost effective production of Gas Electron Multiplier (GEM) Foils. Office of Scientific and Technical Information (OSTI), maj 2010. http://dx.doi.org/10.2172/978340.
Pełny tekst źródłaYu, Jaehoon, i Andrew White. Development of Large Area Gas Electron Multiplier Detector and Its Application to a Digital Hadron Calorimeter for Future Collider Experiments. Office of Scientific and Technical Information (OSTI), wrzesień 2014. http://dx.doi.org/10.2172/1157667.
Pełny tekst źródła