Gotowa bibliografia na temat „Thermopower”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Thermopower”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Thermopower"

1

Kaiser, AB, AL Christie i BL Gallagher. "Investigation of the Interaction of Electrons and Lattice Vibrations Using Glassy Metal Thermopower". Australian Journal of Physics 39, nr 6 (1986): 909. http://dx.doi.org/10.1071/ph860909.

Pełny tekst źródła
Streszczenie:
We calculate the electron-phonon enhancement effect in thermopower using several different models for the Eliashberg function a2 F(E) which describes the interaction of electrons and lattice vibrations. The behaviour of a 2 F(E) at low energies determines whether the predicted thermopower enhancement shows a peak at low temperatures, but the enhancement is rather insensitive to the detailed spectral shape of a2 F(E) at higher energies. The calculations are able to give a good account of the thermopowers of several glassy metals measured by Gallagher and Hickey (1985), with slightly better agreement obtained for a smooth rather than a Debye-like a2 F(E).
Style APA, Harvard, Vancouver, ISO itp.
2

GULIYEV, BAHSHELI, i GENBER KERIMLI. "THE THERMOPOWER IN SEMICONDUCTING THIN FILMS WITH NONPARABOLIC ENERGY BAND". Modern Physics Letters B 26, nr 30 (22.10.2012): 1250198. http://dx.doi.org/10.1142/s0217984912501989.

Pełny tekst źródła
Streszczenie:
In the present work, the in-plane electron thermopower of semiconducting size-quantized films with nonparabolic energy band in a classically strong magnetic field, which is parallel to the film normal, are investigated. It was shown that, for the degenerate electron gas thermopower is a function of film thickness and electron density: for arbitrary thickness thermopower is oscillating function, with the period as a function of concentration, but with respect to concentration thermopower is monotonically increasing function. It is shown that in the case of ultrathin films (quantum wells) thermopower increases, as thickness decreases. This result is in agreement with the experimental dates on GaAs quantum wells.
Style APA, Harvard, Vancouver, ISO itp.
3

SINGH, DAVID J. "THERMOPOWER OF SnTe FROM BOLTZMANN TRANSPORT CALCULATIONS". Functional Materials Letters 03, nr 04 (grudzień 2010): 223–26. http://dx.doi.org/10.1142/s1793604710001299.

Pełny tekst źródła
Streszczenie:
The doping and temperature dependent thermopower of SnTe is calculated from the first principles band structure using Boltzmann transport theory. We find that the p-type thermopower is inferior to PbTe consistent with experimental observations, but that the n-type thermopower is substantially more favorable.
Style APA, Harvard, Vancouver, ISO itp.
4

Abrahamson, Joel T., Bernat Sempere, Michael P. Walsh, Jared M. Forman, Fatih Şen, Selda Şen, Sayalee G. Mahajan i in. "Excess Thermopower and the Theory of Thermopower Waves". ACS Nano 7, nr 8 (7.08.2013): 6533–44. http://dx.doi.org/10.1021/nn402411k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Amato, A., D. Jaccard, J. Sierro, F. Lapierre, P. Haen, P. Lejay i J. Flouquet. "Thermopower and magneto-thermopower of CeRu2Si2 single crystals". Journal of Magnetism and Magnetic Materials 76-77 (grudzień 1988): 263–64. http://dx.doi.org/10.1016/0304-8853(88)90389-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

LIN, SHU-YUAN, LI LU, HONG-MIN DUAN, BEI-HAI MA i DIAN-LIN ZHANG. "THERMOPOWER ANISOTROPY OF YBa2Cu3O7−δ SINGLE CRYSTALS". International Journal of Modern Physics B 03, nr 03 (marzec 1989): 409–13. http://dx.doi.org/10.1142/s0217979289000300.

Pełny tekst źródła
Streszczenie:
The thermopower of YBa 2 Cu 3 O 7−δ single crystals has been measured from 300 K down to superconducting transition temperature. Strong anisotropy was observed. While the thermopower along ab-plane slightly increased with decreasing temperature, reaching 5 ~ 8 μ V/K around 120 K, the thermopower along c-axis showed typical metallic behavior with room temperature value as large as ~ 30 μ V/K .
Style APA, Harvard, Vancouver, ISO itp.
7

Koroleva, Luidmila, Ivan Batashev, Artem Morozov, Anatolii Balbashov, Henryk Szymczak i Anna Slavska-Wanniewska. "Connection of thermopower, magnetothermopower with resistivity and magnetoresistance in manganites with Nd and Sm". EPJ Web of Conferences 185 (2018): 06014. http://dx.doi.org/10.1051/epjconf/201818506014.

Pełny tekst źródła
Streszczenie:
Thermopower, magnetothermopower resistivity and magnetoresistance of single crystal samples Re(1-x)SrxMnO3 (0 ≤ x ≤ 0.3, Re = Nd, Sm) were studied in wide temperature interval, included the Curie temperature TC. Giant maxima of resistivity and thermopower, very big negative magnetothermopower and magnetoresistance were found in TC region. So, a giant maximum of thermopower in TC was found, which suppressed by magnetic field. Simultaneous magnetic field destroys magneto-impurity states – ferrons as evidenced the maxima resistivity and magnetoresistance in TC Hence it follows that giant thermopower in manganites are produced by ferrons and its value is set by the quantity of impurities, that is the concentration of impurities and the volume of sample.
Style APA, Harvard, Vancouver, ISO itp.
8

Kang, Min-Sung, Soo-Young Kang, Won-Yong Lee, No-Won Park, Ki Chang Kown, Seokhoon Choi, Gil-Sung Kim i in. "Large-scale MoS2 thin films with a chemically formed holey structure for enhanced Seebeck thermopower and their anisotropic properties". Journal of Materials Chemistry A 8, nr 17 (2020): 8669–77. http://dx.doi.org/10.1039/d0ta02629h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Chabinyc, Michael. "Behind organics' thermopower". Nature Materials 13, nr 2 (23.01.2014): 119–21. http://dx.doi.org/10.1038/nmat3859.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Shu-yuan, Lin, Lu Li, Zhang Dian-lin, H. M. Duan, William Kiehl i A. M. Hermann. "Thermopower ofTl2Ba2CuO6single crystals". Physical Review B 47, nr 13 (1.04.1993): 8324–26. http://dx.doi.org/10.1103/physrevb.47.8324.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Thermopower"

1

Koumoto, K., W. S. Seo i S. Ozawa. "Huge thermopower of porous Y_2O_3". American Institute of Physics, 1997. http://hdl.handle.net/2237/6986.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Oxley, John Paul. "Thermopower in two dimensional electron systems". Thesis, University of Nottingham, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293657.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Abrahamson, Joel T. (Joel Theodore). "Energy storage and generation from thermopower waves". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76474.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references.
The nonlinear coupling between an exothermic chemical reaction and a nanowire or nanotube with large axial heat conduction guides a self-propagating thermal wave along the nano-conduit. The thermal conduit accelerates the wave by rapidly transporting energy to un-reacted fuel. The reaction wave induces what we term a thermopower wave, resulting in an electrical current in the same direction. At up to 7 W/g, peak power density is larger than that of many present micro-scale power sources (e.g. fuel cells, batteries) and even about seven times greater than commercial Li-ion batteries. Thermopower waves also tend to produce unipolar voltage pulses, although conventional thermoelectric theory predicts bipolar voltage. These waves also generate thermopower in excess of previous measurements in carbon nanotubes (CNTs) and therefore could increase figures of merit in a variety of thermoelectric materials. In this thesis, I have developed the theoretical framework to describe the thermal and chemical profiles of propagating reaction waves, and their electrical properties. My analysis yielded a new analytical solution for one-dimensional reaction and thermal diffusion systems with nth order kinetics that obviates many approximate or numerical approaches from the past 80 years. A generalized logistic. function describes the temperature and concentration profiles within the solid fuel and provides a solution for the wave velocity for a wide range of conditions. This approach offers new insight into such problems spanning several fields in science and engineering, including propulsion and self-propagating high temperature synthesis (SHS) of materials, as well as the dynamics of thermopower waves. Temperature and voltage measurements of thermopower waves on CNTs show that they can generate power as much as four times greater than predictions based on reference measurements of the Seebeck coefficient for static temperature gradients. We hypothesize that the excess thermopower stems from a chemical potential gradient across the CNTs. The fuel (e.g. picramide) adsorbs and dopes the CNTs ahead of the wave and desorbs and reacts behind the wave front. Furthermore, the excess thermopower depends on the mass of fuel added (relative to CNT mass), and the chemical potential difference matches the magnitude of the excess thermopower. Thus, a major conclusion of this thesis is that coupling to a chemical reaction can boost the performance of thermoelectric materials through differential doping. Thermopower waves can have well defined velocity oscillations for certain kinetic and thermal parameter values. Cyclotrimethylene-trinitramine (fuel) on multiwalled CNTs (conduit) system generates voltage oscillations of 400 to 5000 Hz. These frequencies agree with velocity oscillations predicted by my thermochemical model of the reaction wave, extended to include thermal transport within the conduits. Thermopower waves could thus find applications as new types of alternating current (AC) batteries and self-powered signal generators, which could easily be miniaturized. Microelectromechanical systems and sensors would benefit from thermopower wave generators to enable functions such as communications and acceleration that currently require large power packs. Additionally, the "self-discharge" rate of thermopower wave generators is extremely low in contrast to electrochemical storage, since their energy is stored in chemical bonds. Thermopower waves thus enable new energy storage devices and could exceed limitations of conventional thermoelectric devices.
by Joel T. Abrahamson.
Ph.D.
Style APA, Harvard, Vancouver, ISO itp.
4

Isotalo, Heikki. "Thermopower in the characterization of electrically conducting polymers". [Hki] : Societas scientiarum Fennica, 1990. http://catalog.hathitrust.org/api/volumes/oclc/57960808.html.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Anatska, Maryna Petrovna. "The transport coefficients in (R1.5Ce0.5)RuSr2Cu2O10-5 (R=Gd,Eu) rutheno-cuprates". Texas A&M University, 2006. http://hdl.handle.net/1969.1/5019.

Pełny tekst źródła
Streszczenie:
The thermal conductivity, thermopower, and electrical resistivity of (R1.5Ce0.5)RuSr2Cu2O10-delta (R=Gd, Eu) polycrystalline samples with different oxygen doping level are investigated in temperature range 1.8-300 K. Much attention is focused on the dependence of the effect of the annealing in high oxygen pressures as well as the effect of aging on transport coefficients in normal and superconducting states. It was found that the process of deoxydation goes faster for Ru-1222(Eu) samples than for Ru- 1222(Gd) samples, which results in more pronounced granular effects in Ru-1222(Eu) samples. The relative contribution to the thermal conductivity due to electrons and phonons was estimated by using the Wiedemann-Franz relation and the resistivity data. The calculation showed that the maximum electron contribution for Ru-1222(Eu) is about 0.75% and that for Ru-1222(Gd) samples is around 4 %.
Style APA, Harvard, Vancouver, ISO itp.
6

Gibbings, C. J. "Thermoelectric properties of silicon inversion layers". Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372871.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Holland, Edward Robert. "Transport properties in electrically conductive polymeric materials". Thesis, Durham University, 1995. http://etheses.dur.ac.uk/5233/.

Pełny tekst źródła
Streszczenie:
Measurements on free standing films of the conductive polymer polyaniline (PANi) have revealed that charge transport within this material depends upon the level of intermolecular order. This factor is found to depend upon the method of sample preparation. PANi protonated by immersion of solid emeraldine base in aqueous methane sulphonic acid has low conductivity, 30-40 Scm(^-1). This can be enhanced, up to 250 Scm(^-1) if films are stretch oriented prior to protonation. Stretched samples have an electrical conductivity anisotropy factor of order 7 at 300 K, also revealed in their thermopower over the range 100 - 300 K. The behaviour of electrical conductivity with temperature is commensurate with charge transport in a disordered system. Protonation of PANi dissolved in meta cresol by addition of camphor sulphonic acid (CSA) yields material with conductivity of 250-300 Scm(^-1) Variation of the acid concentration has revealed a transition to a metallic response in conductivity (near 300 K) when 20-30% of polymer nitrogen sites are protonated. This character extends to progressively lower temperatures as protonation is increased to 60%. The metallic nature of this material is evident in the linear temperature dependence of thermopower and is ascribed to the presence of crystalhne regions within the polymer fihn, as revealed by an independent x-ray analysis The role of molecular order upon the properties of thin films of 3[2(S2-methylbutoxy)ethyl]-polythiophene has been investigated. Starting with polymer dissolved in 'good' solvent, quantities of nonsolvent lead to reorganisation of the sidechain groups when added. This promotes an increase in effective conjugation length which can be transferred to the solid state by the spin coating process as indicated by spectroscopic studies. With these films acting as the active layer in a field effect transistor the charge carrier mobility can be measured. It is found that as molecular order increases, mobility decreases from 10(^-5) cm(^2)V(^-1)s(^-1) to 710(^-8) cm(^2)V(^-1)s(^-1). This is ascribed to increased interchain separation and effects due to macroscopic aggregate grain boundaries.
Style APA, Harvard, Vancouver, ISO itp.
8

Kopp, Bastian [Verfasser]. "Thermopower of Atomic-Size Contacts at Low Temperature / Bastian Kopp". Konstanz : Bibliothek der Universität Konstanz, 2016. http://d-nb.info/1115727486/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Srivastava, Gauri. "Low temperature measurement of thermopower in mesoscopic normal/superconducting nanostructures". Thesis, Royal Holloway, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430893.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Mahajan, Sayalee G. (Sayalee Girish). "Improving efficiency of ID thermopower wave devices and studying 2D reaction waves". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101509.

Pełny tekst źródła
Streszczenie:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 124-127).
With growing energy consumption, current research in the field is focused on improving and developing alternatives for energy storage and conversion. Factors such as efficiency of energy conversion, usability of this converted form of energy, power density, energy density etc. help us in determining the right energy source or conversion technology for any specific application. The main aim of this thesis was to study self-propagating reaction waves as a means of converting chemical energy into electrical energy. We carried out numerical simulations to study these self-propagating reaction wave systems and their heat transfer properties. Our analysis shows that for certain specific system heat transfer properties, self-propagating reaction waves can sometimes lead to superadiabatic temperatures, which are temperatures higher than the predicted adiabatic reaction temperature. Having energy available at higher temperature has advantages in heat harvesting applications such as thermoelectricity and thermophotovoltaics. We calculated the improvement in efficiency of a modified thermophotovoltaics setup, when the input is a reaction wave, operating under superadiabatic conditions. Experimentally, we studied these self-propagating reaction waves by launching I D thermopower waves. We demonstrated improved chemical-to-electrical conversion efficiency of these devices (from about 10-⁴ % to 10-² %) by operating with newer fuels such as sodium azide and sucrose with potassium nitrate on single-walled carbon nanotube-based thermal conduits. The net efficiency of operation of the device was also improved to up to 1% by using external thermoelectric harvesters to capture the heat energy lost via convection and radiation. We proposed a model combining the ID reaction heat and mass balance equations with the theory of excess thermopower to predict the output voltage profiles of thermopower wave devices and extract useful data from the voltage plots obtained experimentally. This model allows us to quantify the impact of the device-to-device variation of the fuel and thermal conduit properties, and can guide us to a better choice of fuel-thermal conduit pairs to improve the efficiency of operation. Finally, we experimentally studied 2D reaction waves. These waves were launched with a nitrocellulose fuel layer atop an aluminum foil thermal conduit. A wave front characteristic, the shape of these wave fronts, was studied as a function of heat loss. Energy released by these reactions was again harvested using external thermoelectrics to convert heat energy into electricity. We demonstrated that such a setup of 2D reaction waves can be used to illuminate a light-emitting diode (LED).
by Sayalee G. Mahajan.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Thermopower"

1

Tsaousidou, M. Thermopower of low-dimensional structures: The effect of electron–phonon coupling. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.13.

Pełny tekst źródła
Streszczenie:
This article examines the effect of electron-phonon coupling on the thermopower of low-dimensional structures. It begins with a review of the theoretical approaches and the basic concepts regarding phonon drag under different transport regimes in two- and one-dimensional systems. It then considers the thermopower of two-dimensional semiconductor structures, focusing on phonon drag in semi-classical two-dimensional electron gases confined in semiconductor nanostructures. It also analyzes the influence of phonon drag on the thermopower of semiconductor quantum wires and describes the phonon-drag thermopower of doped single-wall carbon nanotubes. The article compares theory and experiment in order to demonstrate the role of phonon-drag and electron-phonon coupling in the thermopower in two and one dimensions.
Style APA, Harvard, Vancouver, ISO itp.
2

Fyodorov, Yan, i Dmitry Savin. Condensed matter physics. Redaktorzy Gernot Akemann, Jinho Baik i Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.35.

Pełny tekst źródła
Streszczenie:
This article discusses some applications of concepts from random matrix theory (RMT) to condensed matter physics, with emphasis on phenomena, predicted or explained by RMT, that have actually been observed in experiments on quantum wires and quantum dots. These observations range from universal conductance fluctuations (UCF) to weak localization, non-Gaussian thermopower distributions, and sub-Poissonian shot noise. The article first considers the UCF phenomenon, nonlogarithmic eigenvalue repulsion, and sub-Poissonian shot noise in quantum wires before analysing level and wave function statistics, scattering matrix ensembles, conductance distribution, and thermopower distribution in quantum dots. It also examines the effects (not yet observed) of superconductors on the statistics of the Hamiltonian and scattering matrix.
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Thermopower"

1

Pala, Nezih, Ahmad Nabil Abbas, Carsten Rockstuhl, Christoph Menzel, Stefan Mühlig, Falk Lederer, Joseph J. Brown i in. "Thermopower". W Encyclopedia of Nanotechnology, 2742. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100854.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Strauch, D. "GaAs: conductivity, thermopower". W New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 187. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_108.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Fujita, Shigeji, i Kei Ito. "Seebeck Coefficient (Thermopower)". W Quantum Theory of Conducting Matter, 195–204. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-74103-1_14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Shastry, B. Sriram. "Thermopower in Correlated Systems". W NATO Science for Peace and Security Series B: Physics and Biophysics, 25–29. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4984-9_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Strunk, C., G. Neuttiens, M. Henny, C. Haesendonck i C. Schönenberger. "Thermopower of Mesoscopic Spin Glasses". W Kondo Effect and Dephasing in Low-Dimensional Metallic Systems, 33–42. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0427-5_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Gibbings, C. J., i M. Pepper. "Thermopower in Silicon Inversion Layers". W Proceedings of the 17th International Conference on the Physics of Semiconductors, 429–32. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4615-7682-2_95.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Rizwana Begum, K., i N. S. Sankeshwar. "Phonon-limited Diffusion Thermopower in Graphene". W Physics of Semiconductor Devices, 695–97. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_179.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Støvneng, J. A., i P. Lipavsky. "Thermopower in Scanning Tunneling Microscope Experiments". W Granular Nanoelectronics, 575–77. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3689-9_51.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Pogosov, A. G., M. V. Budantsev, A. E. Plotnikov, A. K. Bakarov i A. I. Toropov. "Thermopower of a two-dimensional antidot lattice". W Springer Proceedings in Physics, 781–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_369.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Allen, Philip B., Warren E. Pickett i Henry Krakauer. "Prediction of Anisotropic Thermopower of La2−xMxCuO4". W Novel Superconductivity, 489–91. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1937-5_57.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Thermopower"

1

Kaiser, A. B., i C. K. Subramaniam. "Thermopower behaviour in superconductors". W International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835816.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Vaidya, R. G., M. D. Kamatagi, N. S. Sankeshwar, B. G. Mulimani, Jisoon Ihm i Hyeonsik Cheong. "Diffusion Thermopower in Graphene". W PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666594.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Galagali, S. M., i N. S. Sankeshwar. "Diffusion thermopower in ZnO nanowires". W SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4873007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Vaidya, R. G., N. S. Sankeshwar i B. G. Mulimani. "Diffusion thermopower in suspended graphene". W 16th International Workshop on Physics of Semiconductor Devices, redaktorzy Monica Katiyar, B. Mazhari i Y. N. Mohapatra. SPIE, 2012. http://dx.doi.org/10.1117/12.925343.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Yee, Shannon, Jonathan Malen, Pramod Reddy, Rachel Segalman i Arun Majumdar. "Thermoelectricity at the Organic-Inorganic Interface". W 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22690.

Pełny tekst źródła
Streszczenie:
Electronic transport in molecular junctions has been studied through measurements of junction thermopower to evaluate the feasibility of thermoelectric (TE) energy generation using organic-inorganic hybrid materials. Energy transport and conversion in these junctions are heavily influenced by transport interactions at the metal-molecule interface. At this interface the discrete molecular orbitals overlap with continuum electronic states in the inorganic electrodes to create unique energy landscapes that cannot be realized in the organic or inorganic components alone. Over the past decade, scanning probe microscopes have been used to study the electronic conductance of single-molecule junctions[1–5]. Recently, we conducted measurements of junction thermopower using a modified scanning tunneling microscope (STM)[6]. Through our investigations, we have determined: (i) how the addition of molecular substituent groups can be used to predictably tune the TE properties of phenylenedithiol (PDT) junctions[7], (ii) how the length, molecular backbone, and end groups affect junction thermopower[8], and (iii) where electronic transport variations originate[9]. Furthermore, we have recently found that large (10 fold) TE enhancement can be achieved by effectively altering a (noble) metal junction using fullerenes (i.e., C60, PCBM, and C70). We associate the enhancement with the alignment of the frontier orbitals of the fullerene to the chemical potential of the inorganic electrodes. We further found that the thermopower can be predictably tuned by varying the work function of the contacts. This yields considerable promise for altering the surface states at interfaces for enhanced electronic and thermal transport. This paper highlights our work using thermopower as a probe for electronic transport, and reports preliminary results of TE conversion in fullerene-metal junctions.
Style APA, Harvard, Vancouver, ISO itp.
6

Katti, V. S., S. S. Kubakaddi, Dinesh K. Aswal i Anil K. Debnath. "Diffusion Thermopower In GaN∕AlGaN Heterostructures". W INTERNATIONAL CONFERENCE ON PHYSICS OF EMERGING FUNCTIONAL MATERIALS (PEFM-2010). AIP, 2010. http://dx.doi.org/10.1063/1.3530462.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Vaidya, R. G., N. S. Sankeshwar i B. G. Mulimani. "Phonon limited diffusion thermopower in phosphorene". W DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980665.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Wegrowe, J. E., i H. J. Drouhin. "Anisotropic magneto-thermopower in 3d ferromagnets". W Integrated Optoelectronic Devices 2006, redaktorzy Manijeh Razeghi i Gail J. Brown. SPIE, 2006. http://dx.doi.org/10.1117/12.660710.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Singh, Jaiveer, N. Kaurav i Gunadhor S. Okram. "Size-dependent thermopower of nickel nanoparticles". W SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872954.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sen, Arijit. "Conductance and thermopower in molecular nanojunctions". W SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4791553.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Thermopower"

1

Sarachik, Myriam P. Thermal Conductivity and Thermopower near the 2D Metal-Insulator transition, Final Technical Report. Office of Scientific and Technical Information (OSTI), luty 2015. http://dx.doi.org/10.2172/1170416.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii