Artykuły w czasopismach na temat „Thermoplastic polyurethane nanocomposites”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Thermoplastic polyurethane nanocomposites”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Kanabenja, Warrayut, i Pranut Potiyaraj. "Graphene/Thermoplastic Polyurethane Composites". Key Engineering Materials 773 (lipiec 2018): 77–81. http://dx.doi.org/10.4028/www.scientific.net/kem.773.77.
Pełny tekst źródłaTalapatra, Animesh, i Debasis Datta. "A molecular dynamics-based investigation on tribological properties of functionalized graphene reinforced thermoplastic polyurethane nanocomposites". Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 235, nr 1 (16.03.2020): 61–78. http://dx.doi.org/10.1177/1350650120912612.
Pełny tekst źródłaQuadrini, Fabrizio, Denise Bellisario, Loredana Santo, Felicia Stan i Fetecau Catalin. "Compression Moulding of Thermoplastic Nanocomposites Filled with MWCNT". Polymers and Polymer Composites 25, nr 8 (październik 2017): 611–20. http://dx.doi.org/10.1177/096739111702500806.
Pełny tekst źródłaAhmad Zubir, Syazana, Ahmad Sahrim i Ernie Suzana Ali. "Palm Oil Polyol/ Polyurethane Shape Memory Nanocomposites". Applied Mechanics and Materials 291-294 (luty 2013): 2666–69. http://dx.doi.org/10.4028/www.scientific.net/amm.291-294.2666.
Pełny tekst źródłaShamini, G., i K. Yusoh. "Gas Permeability Properties of Thermoplastic Polyurethane Modified Clay Nanocomposites". International Journal of Chemical Engineering and Applications 5, nr 1 (2014): 64–68. http://dx.doi.org/10.7763/ijcea.2014.v5.352.
Pełny tekst źródłaStyan, K., M. Abrahamian, E. Hume i L. A. Poole-Warren. "Antibacterial Polyurethane Organosilicate Nanocomposites". Key Engineering Materials 342-343 (lipiec 2007): 757–60. http://dx.doi.org/10.4028/www.scientific.net/kem.342-343.757.
Pełny tekst źródłaOsman, Azlin Fazlina, Kevin Jack, Grant Edwards i Darren Martin. "Effect of Processing Route on the Morphology of Thermoplastic Polyurethane (TPU) Nanocomposites Incorporating Organofluoromica". Advanced Materials Research 832 (listopad 2013): 27–32. http://dx.doi.org/10.4028/www.scientific.net/amr.832.27.
Pełny tekst źródłaHa Thuc, C. N., H. T. Cao, D. M. Nguyen, M. A. Tran, Laurent Duclaux, A. C. Grillet i H. Ha Thuc. "Preparation and Characterization of Polyurethane Nanocomposites Using Vietnamese Montmorillonite Modified by Polyol Surfactants". Journal of Nanomaterials 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/302735.
Pełny tekst źródłaLiao, Ken-Hsuan, Yong Tae Park, Ahmed Abdala i Christopher Macosko. "Aqueous reduced graphene/thermoplastic polyurethane nanocomposites". Polymer 54, nr 17 (sierpień 2013): 4555–59. http://dx.doi.org/10.1016/j.polymer.2013.06.032.
Pełny tekst źródłaRan, Qianping, Hua Zou, Shishan Wu i Jian Shen. "Study on thermoplastic polyurethane/montmorillonite nanocomposites". Polymer Composites 29, nr 2 (luty 2008): 119–24. http://dx.doi.org/10.1002/pc.20327.
Pełny tekst źródłaPalawat, Natsuda, Phasawat Chaiwutthinan, Sarintorn Limpanart, Amnouy Larpkasemsuk i Anyaporn Boonmahitthisud. "Hybrid Nanocomposites of Poly(Lactic Acid)/Thermoplastic Polyurethane with Nanosilica/Montmorillonite". Materials Science Forum 947 (marzec 2019): 77–81. http://dx.doi.org/10.4028/www.scientific.net/msf.947.77.
Pełny tekst źródłaNair, Adwaita SR, Subhash Mandal, Debmalya Roy i N. EswaraPrasad. "Fabrication of cellular structures in thermoplastic polyurethane matrix using carbonaceous nanofillers". IOP Conference Series: Materials Science and Engineering 1219, nr 1 (1.01.2022): 012004. http://dx.doi.org/10.1088/1757-899x/1219/1/012004.
Pełny tekst źródłaSandu, Ionut Laurentiu, Razvan Rosculet i Catalin Fetecau. "Rheological Properties of Thermoplastic Polyurethane/Multi-Walled Carbon Nanotube Nanocomposites". Key Engineering Materials 699 (lipiec 2016): 18–24. http://dx.doi.org/10.4028/www.scientific.net/kem.699.18.
Pełny tekst źródłaLiu, Hu, Yilong Li, Kun Dai, Guoqiang Zheng, Chuntai Liu, Changyu Shen, Xingru Yan, Jiang Guo i Zhanhu Guo. "Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications". Journal of Materials Chemistry C 4, nr 1 (2016): 157–66. http://dx.doi.org/10.1039/c5tc02751a.
Pełny tekst źródłaYoonessi, Mitra, John A. Peck, Justin L. Bail, Richard B. Rogers, Bradley A. Lerch i Michael A. Meador. "Transparent Large-Strain Thermoplastic Polyurethane Magnetoactive Nanocomposites". ACS Applied Materials & Interfaces 3, nr 7 (28.06.2011): 2686–93. http://dx.doi.org/10.1021/am200468t.
Pełny tekst źródłaPattanayak, Asim, i Sadhan C. Jana. "Properties of bulk-polymerized thermoplastic polyurethane nanocomposites". Polymer 46, nr 10 (kwiecień 2005): 3394–406. http://dx.doi.org/10.1016/j.polymer.2005.03.021.
Pełny tekst źródłaKe, Kai, Vahab Solouki Bonab, Dian Yuan i Ica Manas-Zloczower. "Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures". Carbon 139 (listopad 2018): 52–58. http://dx.doi.org/10.1016/j.carbon.2018.06.037.
Pełny tekst źródłaLiu, Hu, Wenju Huang, Xinru Yang, Kun Dai, Guoqiang Zheng, Chuntai Liu, Changyu Shen, Xingru Yan, Jiang Guo i Zhanhu Guo. "Organic vapor sensing behaviors of conductive thermoplastic polyurethane–graphene nanocomposites". Journal of Materials Chemistry C 4, nr 20 (2016): 4459–69. http://dx.doi.org/10.1039/c6tc00987e.
Pełny tekst źródłaMemarian, F., A. Fereidoon i M. Ghorbanzadeh Ahangari. "The shape memory, and the mechanical and thermal properties of TPU/ABS/CNT: a ternary polymer composite". RSC Advances 6, nr 103 (2016): 101038–47. http://dx.doi.org/10.1039/c6ra23087c.
Pełny tekst źródłaPavličević, Jelena, Snežana Sinadinović-Fišer, Milena Špírková, Jaroslava Budinski-Simendić, Olga Borota, Milovan Janković i Željko Knez. "The Phase Structure of Novel Polycarbonate-Based Polyurethane-Organoclay Nanocomposites". Advanced Materials Research 560-561 (sierpień 2012): 771–75. http://dx.doi.org/10.4028/www.scientific.net/amr.560-561.771.
Pełny tekst źródłaOsman, Azlin F., Grant A. Edwards, Tara L. Schiller, Yosephine Andriani, Kevin S. Jack, Isabel C. Morrow, Peter J. Halley i Darren J. Martin. "Structure–Property Relationships in Biomedical Thermoplastic Polyurethane Nanocomposites". Macromolecules 45, nr 1 (12.12.2011): 198–210. http://dx.doi.org/10.1021/ma202189e.
Pełny tekst źródłaJaramillo, M., J. H. Koo i M. Natali. "Compressive char strength of thermoplastic polyurethane elastomer nanocomposites". Polymers for Advanced Technologies 25, nr 7 (31.03.2014): 742–51. http://dx.doi.org/10.1002/pat.3287.
Pełny tekst źródłaMa, Xiaoyan, Haijun Lu, Guozheng Liang i Hongxia Yan. "Rectorite/thermoplastic polyurethane nanocomposites: Preparation, characterization, and properties". Journal of Applied Polymer Science 93, nr 2 (2004): 608–14. http://dx.doi.org/10.1002/app.20423.
Pełny tekst źródłaKanidi, Maria, Niki Loura, Anna Frengkou, Tatjana Kosanovic Milickovic, Aikaterini-Flora Trompeta i Costas Charitidis. "Inductive Thermal Effect on Thermoplastic Nanocomposites with Magnetic Nanoparticles for Induced-Healing, Bonding and Debonding On-Demand Applications". Journal of Composites Science 7, nr 2 (9.02.2023): 74. http://dx.doi.org/10.3390/jcs7020074.
Pełny tekst źródłaZubir, Syazana Ahmad, Ernie Suzana Ali, Sahrim Haji Ahmad, Norazwani Muhammad Zain i Soo Kai Wai. "Polyurethane/Clay Shape Memory Nanocomposites Based on Palm Oil Polyol". Advanced Materials Research 576 (październik 2012): 236–39. http://dx.doi.org/10.4028/www.scientific.net/amr.576.236.
Pełny tekst źródłaTeuku, Rihayat, i Amroel Suryani. "Morphology Properties of Polyurethane/Clay Nanocomposites Base on Palm Oil Polyol Paint". Advanced Materials Research 647 (styczeń 2013): 701–4. http://dx.doi.org/10.4028/www.scientific.net/amr.647.701.
Pełny tekst źródłaBai, Jingjing, Weijie Ren, Yulong Wang, Xiaoxia Li, Cheng Zhang, Zhenzhong Li i Zhongyuan Xie. "High-performance thermoplastic polyurethane elastomer/carbon dots bulk nanocomposites with strong luminescence". High Performance Polymers 32, nr 7 (27.02.2020): 857–67. http://dx.doi.org/10.1177/0954008320907123.
Pełny tekst źródłaHo, Wai K., Joseph H. Koo i Ofodike A. Ezekoye. "Thermoplastic Polyurethane Elastomer Nanocomposites: Morphology, Thermophysical, and Flammability Properties". Journal of Nanomaterials 2010 (2010): 1–11. http://dx.doi.org/10.1155/2010/583234.
Pełny tekst źródłaAllcorn, Eric K., Maurizio Natali i Joseph H. Koo. "Ablation performance and characterization of thermoplastic polyurethane elastomer nanocomposites". Composites Part A: Applied Science and Manufacturing 45 (luty 2013): 109–18. http://dx.doi.org/10.1016/j.compositesa.2012.08.017.
Pełny tekst źródłaAmin, Khairatun Najwa Mohd, Nasim Amiralian, Pratheep K. Annamalai, Grant Edwards, Celine Chaleat i Darren J. Martin. "Scalable processing of thermoplastic polyurethane nanocomposites toughened with nanocellulose". Chemical Engineering Journal 302 (październik 2016): 406–16. http://dx.doi.org/10.1016/j.cej.2016.05.067.
Pełny tekst źródłaJia, Run-Ping, Cai-Feng Wang, Kang-sheng Zheng, Xin-Yao He i Mao-Song Huang. "Preparation, characterization, and properties of CeO2/thermoplastic polyurethane nanocomposites". Journal of Reinforced Plastics and Composites 34, nr 13 (29.05.2015): 1090–98. http://dx.doi.org/10.1177/0731684415587349.
Pełny tekst źródłaOsman, Azlin Fazlina, Grant Edwards i Darren Martin. "Effects of Processing Method and Nanofiller Size on Mechanical Properties of Biomedical Thermoplastic Polyurethane (TPU) Nanocomposites". Advanced Materials Research 911 (marzec 2014): 115–19. http://dx.doi.org/10.4028/www.scientific.net/amr.911.115.
Pełny tekst źródłaMaldonado-Magnere, Santiago, Mehrdad Yazdani-Pedram, Héctor Aguilar-Bolados i Raul Quijada. "Thermally Reduced Graphene Oxide/Thermoplastic Polyurethane Nanocomposites: Mechanical and Barrier Properties". Polymers 13, nr 1 (28.12.2020): 85. http://dx.doi.org/10.3390/polym13010085.
Pełny tekst źródłaDai, Li, Run Ping Jia, Xin Yao He i Mao Song Huang. "Preparation and Thermal Performance of Fluorinated Carbon Nanotubes/Thermoplastic Polyurethane Nanocomposites". Applied Mechanics and Materials 687-691 (listopad 2014): 4273–76. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.4273.
Pełny tekst źródłaMajdoub, Mohammed, Younes Essamlali, Othmane Amadine, Ikram Ganetri i Mohamed Zahouily. "Organophilic graphene nanosheets as a promising nanofiller for bio-based polyurethane nanocomposites: investigation of the thermal, barrier and mechanical properties". New Journal of Chemistry 43, nr 39 (2019): 15659–72. http://dx.doi.org/10.1039/c9nj03300a.
Pełny tekst źródłaBarick, Aruna Kumar, i Young-Wook Chang. "Nanocomposites based on thermoplastic polyurethane, millable polyurethane, and organoclay: effect of organoclay content". High Performance Polymers 26, nr 5 (11.03.2014): 609–17. http://dx.doi.org/10.1177/0954008314525972.
Pełny tekst źródłaKausar, Ayesha. "Polymeric nanocomposites reinforced with nanowires: Opening doors to future applications". Journal of Plastic Film & Sheeting 35, nr 1 (15.08.2018): 65–98. http://dx.doi.org/10.1177/8756087918794009.
Pełny tekst źródłaOsman, Azlin Fazlina, Peter Halley i Darren Martin. "Impact of Controlled Hydrophobicity of the Organically Modified Silicates on the Properties of Biomedical Thermoplastic Polyurethane (TPU) Nanocomposites". Advanced Materials Research 795 (wrzesień 2013): 9–13. http://dx.doi.org/10.4028/www.scientific.net/amr.795.9.
Pełny tekst źródłaLeszczyńska, Agnieszka, i Krzysztof Pielichowski. "The Mechanical and Thermal Properties of Polyoxymethylene (POM)/Organically Modified Montmorillonite (OMMT) Engineering Nanocomposites Modified with Thermoplastic Polyurethane (TPU) Compatibilizer". Materials Science Forum 714 (marzec 2012): 201–9. http://dx.doi.org/10.4028/www.scientific.net/msf.714.201.
Pełny tekst źródłaMuralidharan, M. N. "Thermally Reduced Graphene Oxide/Thermoplastic Polyurethane Nanocomposites As Photomechanical Actuators". Advanced Materials Letters 4, nr 12 (1.12.2013): 927–32. http://dx.doi.org/10.5185/amlett.2013.5474.
Pełny tekst źródłaMohd Amin, Khairatun Najwa, Celine Chaleat, Grant Edwards, Darren J. Martin i Pratheep Kumar Annamalai. "A cleaner processing approach for cellulose reinforced thermoplastic polyurethane nanocomposites". Polymer Engineering & Science 62, nr 3 (26.01.2022): 949–61. http://dx.doi.org/10.1002/pen.25899.
Pełny tekst źródłaSumer Gaaz, Tayser, Abu Bakar Sulong, Majid Niaz Akhtar i Muhammad Rafi Raza. "Morphology and tensile properties of thermoplastic polyurethane-halloysite nanotube nanocomposites". International Journal of Automotive and Mechanical Engineering 12 (30.12.2015): 2844–56. http://dx.doi.org/10.15282/ijame.12.2015.4.0239.
Pełny tekst źródłaKalakonda, P., S. Banne i PB Kalakonda. "Enhanced mechanical properties of multiwalled carbon nanotubes/thermoplastic polyurethane nanocomposites". Nanomaterials and Nanotechnology 9 (1.01.2019): 184798041984085. http://dx.doi.org/10.1177/1847980419840858.
Pełny tekst źródłaLee, Minho, Donghyeon Kim, Jeongyup Kim, Jun Kyun Oh, Homero Castaneda i Jeong Ho Kim. "Antimicrobial Activities of Thermoplastic Polyurethane/Clay Nanocomposites against Pathogenic Bacteria". ACS Applied Bio Materials 3, nr 10 (22.09.2020): 6672–79. http://dx.doi.org/10.1021/acsabm.0c00452.
Pełny tekst źródłaLan, Yan, Hu Liu, Xiaohan Cao, Shuaiguo Zhao, Kun Dai, Xingru Yan, Guoqiang Zheng, Chuntai Liu, Changyu Shen i Zhanhu Guo. "Electrically conductive thermoplastic polyurethane/polypropylene nanocomposites with selectively distributed graphene". Polymer 97 (sierpień 2016): 11–19. http://dx.doi.org/10.1016/j.polymer.2016.05.017.
Pełny tekst źródłaKoerner, Hilmar, John Kelley, Justin George, Lawrence Drummy, Peter Mirau, Nelson S. Bell, Julia W. P. Hsu i Richard A. Vaia. "ZnO Nanorod−Thermoplastic Polyurethane Nanocomposites: Morphology and Shape Memory Performance". Macromolecules 42, nr 22 (24.11.2009): 8933–42. http://dx.doi.org/10.1021/ma901671v.
Pełny tekst źródłaKarak*, Niranjan, Rocktotpal Konwarh i Brigitte Voit. "Catalytically Active Vegetable‐Oil‐Based Thermoplastic Hyperbranched Polyurethane/Silver Nanocomposites". Macromolecular Materials and Engineering 307, nr 10 (październik 2022): 2200576. http://dx.doi.org/10.1002/mame.202200576.
Pełny tekst źródłaKarak, Niranjan, Rocktotpal Konwarh i Brigitte Voit. "Catalytically Active Vegetable-Oil-Based Thermoplastic Hyperbranched Polyurethane/Silver Nanocomposites". Macromolecular Materials and Engineering 295, nr 2 (4.12.2009): 159–69. http://dx.doi.org/10.1002/mame.200900211.
Pełny tekst źródłaZhao, Wenming, Mei Li i Hua-Xin Peng. "Functionalized MWNT-Doped Thermoplastic Polyurethane Nanocomposites for Aerospace Coating Applications". Macromolecular Materials and Engineering 295, nr 9 (27.07.2010): 838–45. http://dx.doi.org/10.1002/mame.201000080.
Pełny tekst źródłaBarick, A. K., i D. K. Tripathy. "Preparation and characterization of carbon nanofiber reinforced thermoplastic polyurethane nanocomposites". Journal of Applied Polymer Science 124, nr 1 (10.10.2011): 765–80. http://dx.doi.org/10.1002/app.35066.
Pełny tekst źródła