Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Thermoplastic composite armors reinforced.

Rozprawy doktorskie na temat „Thermoplastic composite armors reinforced”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 27 najlepszych rozpraw doktorskich naukowych na temat „Thermoplastic composite armors reinforced”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.

1

Ekström, Lars Johan. "Welding of bistable fibre-reinforced thermoplastic composite pipelines". Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614933.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Wu, Xiang. "Thermoforming continuous fiber reinforced thermoplastic composites". Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/9383.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Howes, Jeremy C. "Interfacial strength development in thermoplastic resins and fiber-reinforced thermoplastic composites". Thesis, Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/77899.

Pełny tekst źródła
Streszczenie:
The objective of this study was to develop tests that could be used to characterize autohesive strength development in amorphous thermoplastic resins and fiber-reinforced thermoplastic prepregs. All tests were performed using polysulfone P1700 thermoplastic resin and AS4/P1700 graphite-polysulfone prepreg. Two test methods were examined to measure autohesion in neat resin samples. These included an interfacial tension test based on the ASTM tensile adhesion test (ASTM D897) and a fracture toughness test using a compact tension (CT) specimen (based on the ASTM toughness test for metals ASTM E399-83). The interfacial tensile test proved to be very difficult to perform and with an unacceptable amount of data scatter. The data obtained using the compact tension test were repeatable and could be correlated with temperature and contact time. Autohesive strength development in fiber-reinforced prepreg samples was measured using a double cantilever beam (DCB) interlaminar fracture toughness test. The fracture mechanisms were determined to be different in the healed DCB specimen than the virgin specimen due to resin flow at the crack plane during the healing tests. The CT test was found suitable for use in determining the autohesive properties and self-diffusion coefficient of neat resin. The DCB test, although not suitable for autohesive testing, indicated that repair of thermoplastic matrix composites is possible; however, the repair will not be as tough as the virgin material.
Master of Science
Style APA, Harvard, Vancouver, ISO itp.
4

Leach, David W. "An experimental study of the processing parameters in thermoplastic filament winding". Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/16030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Claassen, Marius. "A reconfigurable manufacturing system for thermoplastic fibre-reinforced composite parts : a feasibility assessment". Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97045.

Pełny tekst źródła
Streszczenie:
Thesis (MEng)--Stellenbosch University, 2015.
ENGLISH ABSTRACT: The South African manufacturing industry plays a pivotal role in the growth of its local economy. Modern manufacturing requirements include the ability to respond quickly to product variability, fluctuations in product demand and new process technologies. The reconfigurable manufacturing paradigm has been proposed to meet the demands of the new manufacturing requirements. In order to assess the feasibility of incorporating automated, reconfigurable manufacturing technologies into the production process of thermoplastic fibre-reinforced composite parts, a system, based on the thermoforming process, that implements these technologies was developed and evaluated. The assessment uses a seat pan for commercial aircraft as case study. Aspects that were addressed include the architecture, configuration and control of the system. The architecture and configuration addressed the sheet cutting, fixturing, reinforcing, heating, forming, quality assurance and transportation. The control, implemented using agents and based on the ADACOR holonic reference architecture, addresses the cell control requirements of the thermoforming process. An evaluation of the system’s reconfigurability and throughput is performed using KUKA Sim Pro. The evaluation of the system’s throughput is compared to the predicted throughput of the conventional technique for manufacturing thermoplastic fibre reinforced composite parts in a thermoforming process. The evaluation of the system’s performance show that the system designed in this thesis for the manufacture of a thermoplastic fibre-reinforced composite seat pan sports a significant advantage in terms of throughput rate, which demonstrates its technical feasibility. The evaluation of the system’s reconfigurability show that, through its ability to handle new hardware and product changes, it exhibits the reconfigurability characteristics of modularity, convertibility, integrability and scalability.
AFRIKAANSE OPSOMMING: Die Suid-Afrikaanse vervaardigingsbedryf speel 'n sentrale rol in die groei van die plaaslike ekonomie. Moderne vervaardiging vereistes sluit in die vermoë om vinnig te reageer op die produk veranderlikheid, skommelinge in die produk aanvraag en nuwe proses tegnologieë. Die herkonfigureerbare vervaardiging paradigma is voorgestel om te voldoen aan die nuwe produksie vereistes. Ten einde die uitvoerbaarheid van die integrasie van outomatiese, herkonfigureerbare vervaardiging-tegnologieë in die produksieproses van veselversterkte saamgestelde onderdele te evalueer, is 'n stelsel, gebaseer op die termo-vormingsproses, wat sulke tegnologieë implementeer, ontwikkel. Die assessering gebruik 'n sitplek pan vir kommersiële vliegtuie as gevallestudie. Aspekte wat aangespreek is sluit in die argitektuur, konfigurasie en beheer van die vervaardigingstelsel. Die argitektuur en konfigurasie spreek aan die sny, setmate, versterking, verwarming, vorm, gehalteversekering en vervoer van n veselversterkte saamgestelde sitplek pan in 'n termo-vormingsproses. Die beheer, geïmplementeer deur die gebruik van agente en gebaseer op die ADACOR holoniese verwysing argitektuur, spreek die selbeheervereistes van die termo-vormingsproses aan. 'n Evaluering van die stelsel se herkonfigureerbaarheid en deurvoer word gedoen met die behulp van KUKA Sim Pro. Die evaluering van die stelsel se deurvoer word vergelyk met die deurvoer van die konvensionele vervaardigingsproses vir termoplastiese vessel-versterkte saamgestelde onderdele in 'n termo-vormingsproses. Die evaluering van die stelsel se prestasie toon dat die stelsel wat in hierdie tesis ontwerp is vir die vervaardiging van 'n termoplastiese vessel-versterkte saamgestelde sitplek pan, hou 'n beduidende voordeel, in terme van deurvloeikoers, in wat die stelsel se tegniese haalbaarheid toon. Die evaluering van die stelsel se herkonfigureerbaarheid wys dat, deur middel van sy vermoë om nuwe hardeware en produk veranderinge te hanteer, die stelsel herkonfigureerbare einskappe van modulariteit, inwisselbaarheid, integreerbaarheid en skaalbaarheid vertoon.
Style APA, Harvard, Vancouver, ISO itp.
6

Brunnacker, Lena. "Short Carbon Fiber-Reinforced Thermoplastic Composites for Jet Engine Components". Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76733.

Pełny tekst źródła
Streszczenie:
State-of-the-art aircraft engine manufactures aim to reduce theirenvironmental impact steadily. Thereby they attempt to increase engineefficiency, use new renewable fuel sources and most importantly aim toreduce component weight. While Titanium, Aluminum and continuousfiber reinforced thermosetting composites and superalloys prevail in thecurrent material selection, the present work desires to raise awareness fora novel group of materials; short carbon fiber reinforced thermoplasticcomposites (SCFRTPs). In this kind of composite short fibers givedimensional stability and strength while the thermoplastic matrix ensuresthe physical properties, even at temperatures up to 300°C.Even though in some applications these materials offer great potential tosave weight and cost, it is not clear if their properties suffice to be used indemanding areas of the aero engine and if they are still able provide costand weight reductions there.The present work therefore investigated potential aero-engine componentsthat could be replaced by SCFRTPs. With literature, manufacturer data andmaterial and process modelling approaches, it is shown that SCFRTPsmechanical and physical properties suffice for the selected component.Further it is shown that cost reductions up to 77% and weight savings upto 67% compared to the Ti-6Al-4V baseline component are possible.
Style APA, Harvard, Vancouver, ISO itp.
7

LUPONE, FEDERICO. "Additive manufacturing of carbon fiber reinforced thermoplastic polymer composites". Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2966347.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gray, Robert Williamson IV. "The Effects of Processing Conditions on Thermoplastic Prototypes Reinforced with Thermotropic Liquid Crystalline Polymers". Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/46512.

Pełny tekst źródła
Streszczenie:
This work is concerned with preliminary studies on developing thermoplastic composite materials suitable for use in fused deposition modeling (FDM). Polypropylene (PP) strands reinforced with continuous thermotropic liquid crystalline polymer (TLCP) fibrils were generated in a novel dual extruder process. Strands were then re-extruded to form short fiber composite monofilaments that were used as feed stock in the FDM 1600 rapid prototyping system. Prototypes containing 40 wt% Vectra A were shown to have tensile properties twice those of parts built using acrylonitrile butadiene styrene copolymer (ABS), a commercially available material used in the FDM 1600 rapid prototyping system. It was also shown that the final mechanical properties of a composite prototype can be tailored to a specific application by adjusting the lay-down pattern, increasing the functionality of the prototype. In order to obtain the maximum tensile properties in these composite prototype, additional studies were performed to determine the effects of thermal and deformation histories on the mechanical properties of monofilaments that were re-extruded from long fiber TLCP reinforced strands. Strands were consolidated uniaxially at temperatures just above the melting point of the matrix in order to determine the effects of thermal history, and an approximate 20% reduction in tensile modulus relative to the modulus of the strands was observed. Monofilaments that could be used as feed stock in FDM were extruded from long fiber TLCP reinforced strands using a capillary rheometer in order to study the effects of capillary diameter, capillary L/D, and apparent shear rate on the tensile properties.
Master of Science
Style APA, Harvard, Vancouver, ISO itp.
9

Beguinel, Johanna. "Interfacial adhesion in continuous fiber reinforced thermoplastic composites : from micro-scale to macro-scale". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI051.

Pełny tekst źródła
Streszczenie:
L’intérêt croissant de l’industrie pour les matériaux composites thermoplastiques est motivé par leurs propriétés de thermoformabilité, de recyclabilité ainsi que leurs capacités de cadences de production élevées. Le développement de matériaux pré-imprégnés thermoplastiques, apparus dès les années 1980, s’est imposé comme un moyen efficace de contourner les fortes viscosités des polymères utilisés en réduisant la distance d’écoulement des polymères à l’état « fondu ». Cette étude s’est plus particulièrement intéressée au développement de composites à base de tissus de verre et de carbone pré-imprégnés par un latex acrylique, le TPREG I. En outre, les propriétés mécaniques élevées des matrices acryliques, alliées à un coût relativement faible, en font un matériau intéressant, de nature à permettre un saut technologique dans la conception et la fabrication de composites structuraux à matrice organique. Notre étude s’est concentrée sur la mesure de l’adhésion à l’interface fibre/matrice acrylique car cette région est au cœur du transfert de charge de la matrice vers les fibres et conditionne donc les propriétés mécaniques du composite. Nous avons choisi d’évaluer l’adhésion interfaciale en combinant des analyses de mouilllage avec des tests mécaniques aux échelles microscopique et macroscopique. Le test micromécanique de la microgoutte permet de mettre en évidence le rôle central de l’ensimage des fibres sur la contrainte de cisaillement interfaciale. L’adhésion thermodynamique, déterminé par des mesures d’énergie de surface, est en accord avec la contrainte de cisaillement et souligne l’influence de la polarité de l’ensimage. A l’échelle macroscopique, les essais de traction hors-axe sur composites unidirectionnels permettant de solliciter l’interface en cisaillement quasi-plan ont mis en exergue une corrélation entre les échelles micro et macro. L’étude a également permis de dégager une forte augmentation de l’adhésion grâce à une modification de la matrice acrylique, ainsi qu’une dégradation des propriétés interfaciales à l’échelle micro par vieillissement hydrolytique. Cette étude constitue une première base de données concernant les propriétés interfaciales de composites thermoplastiques acryliques et démontre l’importance d’une étude multi-échelles dans la conception de nouveaux composites
The present study was initiated by the development of a new processing route, i.e. latex-dip impregnation, for thermoplastic (TP) acrylic semi-finished materials. The composites resulting from thermocompression of TPREG I plies were studied by focusing of interfacial adhesion. Indeed the fiber/matrix interface governs the stress transfer from matrix to fibers. Thus, a multi-scale analysis of acrylic matrix/fiber interfaces was conducted by considering microcomposites, as models for fiber-based composites, and unidirectional (UD)macro-composites. The study displayed various types of sized glass and carbon fibers. On one hand, the correlation between thermodynamic adhesion and practical adhesion, resulting from micromechanical testing, is discussed by highlighting the role of the physico-chemistry of the created interphase. Wetting and thermodynamical adhesion are driven by the polarity of the film former of the sizing. On the other hand, in-plane shear modulus values from off-axis tensile test results on UD composites are consistent with the quantitative analyses of the interfacial shear strength obtained from microcomposites. More specifically, both tests have enabled a differentiation of interface properties based on the fiber sizing nature for glass and carbon fiber-reinforced (micro-)composites. The study of overall mechanical and interface properties of glass and carbon fiber/acrylic composites revealed the need for tailoring interfacial adhesion. Modifications of the matrix led to successful increases of interfacial adhesion in glass fiber/acrylic composites. An additional hygrothermal ageing study evidenced a significant loss of interfacial shear strength at micro-scale which was not observed for UD composites. The results of this study are a first step towards a database of relevant interface properties of structural TP composites. Finally, the analyses of interfaces/phases at different scales demonstrate the importance of a multi-scale approach to tailor the final properties of composite parts
Style APA, Harvard, Vancouver, ISO itp.
10

Louwsma, Jeroen. "Synthesis and investigation of oligomers based on phenylalanine as interfacial agents in fibre-reinforced thermoplastic composite materials". Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAF047.

Pełny tekst źródła
Streszczenie:
Le développement d’agents interfaciaux pour des matériaux composites renforcés de fibres est nécessaire afin d’obtenir des matériaux performants notamment pour l’industrie automobile. Le projet se concentre sur la synthèse d’oligomères à séquences contrôlées préparés par synthèse en phase solide par réaction d’amidification et de cycloaddition assistée par le cuivre entre un azoture et un alcyne pour introduire précisément des unités de phénylalanine et des groupes aliphatiques. Ces oligomères ont été testés comme agents interfaciaux pour des matériaux composites à base de polypropylène renforcés de fibres de Kevlar. Leur capacité à s’adsorber sur les fibres a été étudiée de façon qualitative par microscopie électronique à balayage et quantitative par analyse gravimétrique. Des expériences préliminaires sur des fibres de Kevlar traitées avec des oligomères synthétisés dans une matrice de polypropylène ont été réalisées pour estimer leur potentielle utilisation dans des matériaux composites
The development of interfacial agents for fibre-reinforced composite materials is needed to obtain performant materials especially for the automotive industry. The project focused on the synthesis of sequence-controlled oligomers prepared by solid phase synthesis using amidation and copper-assisted alkyne-azide cycloaddition reactions to introduce precisely phenylalanine and aliphatic building blocks. These oligomers were evaluated as potential interfacial agents for Kevlar fibre-reinforced polypropylene composite materials. Their ability to adsorb on the fibres was investigated qualitatively by scanning electron microscopy and quantitatively by gravimetric analysis. Some preliminary experiments on the Kevlar fibres treated with some of the synthesised oligomers in a polypropylene matrix were conducted to estimate their potential use in composite materials
Style APA, Harvard, Vancouver, ISO itp.
11

Van, der Westhuizen Artho Otto. "Impact response of a continuous fibre reinforced thermoplastic from a soft bodied projectile". Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80095.

Pełny tekst źródła
Streszczenie:
Thesis (MScEng)--Stellenbosch University, 2013.
AFRIKAANSE OPSOMMING: Saamgestelde materiale het baie gewilde materiale in die lugvaart- en motor industrië geword as gevolg van die gewigsbesparende voordele wat dit inhou. Kostes en ander verwerkingsprobleme het tradisioneel die wydverspreide gebruik van spesifiek termoplasties-versterkte vesels in hierdie areas verhinder. Baie van die vervaardigingsprobleme (spesifiek lang siklusse) is aangespreek met die aanvang van termoplastiese matriks materiaal soos Polyphenolien Sulfied (PPS). Hierdie materiaal voldoen ook aan die lugvaart-industrie se brand-, rook- en giftigheidstandaarde. Termoplastiese saamgestelde materiale kan byvoorbeeld gevind word op komponente in vliegtuie se binneruimtes en ook die voorste rand van die vlerke. Hierdie komponente is hoogs vatbaar vir impakskade. Die hoë sterkte en styfheid tot gewig verhoudings van saamgestelde materiale laat toe vir dun materiaal dwarssnitte. Komponente is dus kwesbaar vir uit-vlakkige impak beladings. Saamgestelde materiale kan ook intern deur hierdie beladings beskadig word en kan nie met die blote oog waargeneem kan word nie. Dit is dus nodig om die skade weens hierdie beladings tydens normale gebruik akkuraat te voorspel. Verder sal dit nuttig wees om die struktuur se gedrag te bepaal in toepassings waar byvoorbeeld passasier veiligheid krities is, soos op vliegtuig ruglenings tydens noodlandings. In hierdie studie is die potensiële vervaardigingsvoordele van termoplastiese saamgestelde materiale gedemonstreer. Daarbenewens is 'n uit-vlakkige impak deur 'n sagte liggaam herbou in 'n laboratorium omgewing. Die primêre doelwit van hierdie studie was om die impak numeries te modelleer. Vervaardigingsvoordele van `n vesel versterkte termoplastiese laminaat is gedemonstreer deur die vervaardiging van 'n konkawe, agt laag laminaat uit 'n vooraf gekonsolideerde geweefde doek. Die totale verwerkingstyd van die plat laminaat na 'n konkawe laminaat was minder as vyf minute. 'n Eenvoudige plat laminaat en 'n konkawe laminaat is onderwerp aan 'n lae snelheid impak deur 'n sagte projektiel. Die impak is gemodelleer deur die evaluering van drie modelleringsmetodes vir die saamgestelde paneel. Die evalueringskriteria het o.a. ingesluit of laminaat se volle gedrag suksesvol gemodelleer kon word met behulp van slegs 2D dop elemente. Die reaksie van die saamgestelde paneel en gepaardgaande faling is met wisselende vlakke van sukses deur die drie geëvalueerde modelle voorspel. Die faling van tussen-laminêre bindings (verwys na as delaminasie) kon nie deur enige van die modelle voorspel word nie. Twee van die modelle het egter in-vlak faling met redelike akkuraatheid voorspel.
ENGLISH ABSTRACT: Due to weight saving advantages composite materials have become a highly popular material in the aerospace and automotive industries. Traditionally processing difficulties and costs have been a barrier to widespread composite material use in these industries. With the advent of thermoplastic matrix materials such as Polyphenoline Sulphide (PPS) the processing difficulties (especially long cycle times) experienced with traditional thermosetting resins can be addressed while maintaining aerospace Fire-Smoke and Toxicity (FST) approval. Thermoplastic composites can for example be found on aircraft interior components and leading edges of the wings. These areas are highly susceptible to impact damage. The high strength- and stiffness to weight ratios of composites allows for thin material cross sections. This leaves the components vulnerable to out-of-plane impact loads. Composite materials may also be damaged internally by these loads, leaving the damage undetectable through visual inspections. It may therefore be necessary to predict the amount of damage a component would sustain during normal operation. Additionally, it would be useful to predict structural response of these materials in applications where passenger safety is crucial, such as aircraft seat backrests during emergency landings. In this study the potential processing benefits of thermoplastic composite materials were demonstrated. Additionally an out-of-plane impact from a soft bodied projectile was reconstructed in a laboratory environment. The primary objective was to numerically model the impact event. Processing benefits of thermoplastics were demonstrated by producing a single curvature eight layered laminate from a pre-consolidated woven sheet. The total processing time from flat panel to a single curvature panel was below five minutes. A simple flat laminate and a single curvature laminate were subjected to a low velocity drop weight impact load from a soft bodied projectile. These impact events were modelled by evaluating three modelling methods for the composite panel structural response and damage evolution. Part of the evaluation criteria included whether laminate failure could be modelled successfully using only 2D shell elements. The response of the composite panel and accompanying failure were predicted with varying levels of success by the three evaluated models. The failure of interlaminar bonds (referred to as delamination) could not be predicted by either model. However two of the models predicted in-plane failure with reasonable accuracy.
Style APA, Harvard, Vancouver, ISO itp.
12

Siengchin, Suchart. "Natural Fiber Reinforced Thermoplastics". Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-222094.

Pełny tekst źródła
Streszczenie:
Biocomposites made from biodegradable polymer as matrix and natural fiber as reinforcement are certainly environmentally friendly materials. Both constituent materials are fully biodegradable and do not leave any noxious components on Earth. The natural fibers have been used as reinforcement due to their advantages compared to glass fibers such as low cost, high specific strength and modulus, low density, renewability and biodegradability. Major aims of this work were to produce natural fibers and/or nanoparticles with polyethylene (PE), polypropylene (PP) and polylactide (PLA), poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) matrices and determine their structure-property relationships. Following abstracts of the present research work are manifold: BINARY COMPOSITES Polylactide (PLA)/flax mat composites The polylactide (PLA)/flax mat and modified PLA/flax mat composites were produced by hot press technique. Two additives of non-regulated wax/ethylene acrylate copolymer/butyl acrylate and acrylic were used as modifier for PLA. The dispersion of the flax mat in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical and thermal properties of the composites were determined in tensile test, thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the PLA based composites increased the impact resistance. The tensile strength value of modified PLA/flax mat composite decreased slightly compared to the PLA. The elongation at break data indicated that an improvement in ductility of modified PLA and its composites. Moreover, addition of thermal modifier enhanced thermal resistance below processing temperature of PLA and had a marginal effect on the glass transition temperature of PLA. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. The principle of linear viscoelastic material was fairly applicable to convert from the modulus to the creep compliance for all systems studied. Polylactide (PLA)/woven flax textiles composites The polylactide (PLA)/woven flax textiles 2x2 twill and 4x4 hopsack composites were produced by interval hot press technique. Two weave styles of flax used to reinforce in PLA. The dispersion of the flax composite structures in the composites was inspected in scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical properties (tensile, stiffness and strength) of the composites were determined in tensile and dynamic-mechanical thermal analysis (DMTA) tests, respectively. SEM observed that the interfacial gaps around pulled-out fibers were improved when produced by the interval hot press. It was also found that the both styles of flax composites increased the impact resistance compared to the neat PLA. The tensile strength and stiffness value of PLA/flax composites were markedly higher than that of the neat PLA and reflect the effects of composite structures. The calculated storage creep compliance was constructed by applying the time-temperature superposition (TTS) principle. The calculated creep response of these flax composites was much lower than that of the neat PLA. Polyethylene and polypropylene/nano-silicon dioxide/flax composites Composites composed of polylactide (PLA), modified PLA and woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) were produced by hot press technique. Two structurally different additives used to modify PLA. The dispersion of the flax composite structures in the composites was studied by scanning electron microscopy (SEM) and computed microtomography system (µCT). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The thermomechanical and creep properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA)and short-time creep tests, respectively. It was found that the modified PLA and its composite increased the impact resistance compared to the unmodified PLA. Incorporation of flax decreased resistance to thermal degradation and increased water uptake. The impact energy and stiffness value of PLA/flax composites was markedly higher than that of PLA but reflect the effects of composite structures and flax content. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. From the master curve data, the effect of modified PLA on the storage modulus was more pronounced in the low frequencies range. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites The textile biocomposites made from woven and non-woven flax fibre reinforced poly(butylene adipate-co-terephthalate) (PBAT) were prepared by compression moulding using film stacking method. The mechanical properties (such as tensile strength and stiffness, flexural strength and modulus, and impact strength) of textile biocomposites were determined in tensile, flexural and impact tests, respectively. The PBAT-based composites were subjected to water absorption. The comparison of the mechanical properties was made between pure PBAT and textile composites. The influence of flax weave styles on the mechanical properties was also evaluated. The results showed that the strength of the textile biocomposites was increased according to weave types of fibers, especially in the stiffness was significantly increased with the higher densification of the fibers. The 4x4-plain woven fibers (4-yard-wrap and 4-yard-weft weave direction) reinforced biocomposite indicated the highest strength and stiffness compared to the other textile biocomposites and pure PBAT. This was considered to be as the result of the character of weave style of 4x4-plain woven fibers. The aminopropyltriethoxysilane affected the mechanical properties and water absorption of the resulting composites laminates due to the surface compatibility between flax fiber and PBAT. HYBRID COMPOSITES Polyethylene/nanoparticle, natural and animal composites Binary and ternary composites composed of high-density polyethylene (HDPE), boehmite alumina (BA) and different kinds of natural-, animal fibers, like flax, sponge gourd (SG), palm and pig hair (PH) were produced by hot press technique. Aqueous BA suspensions were sprayed on the HDPE/flax mat to prepare nanoparticle/natural fiber reinforced ternary polymer composites followed by drying. The dispersion of the natural-, animal fibers and BA particles in the composites was studied by scanning electron microscopy (SEM) and discussed. The thermomechanical and stress relaxation properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and short-time stress relaxation tests (performed at various temperatures), respectively. The HDPE based composites were subjected to water absorption and instrumented falling weight impact tests. It was found that the all composites systems increased the stiffness, stress relaxation and reduced the impact toughness. The stress relaxation modulus of natural-, animal fiber composites were higher compared to that of the neat HDPE. This modulus increased greatly with in corporation of BA. The relaxation master curves were constructed by applying the time-temperature superposition (TTS) principle. The inverse of Findley power law could fairly applicable to describe the relaxation modulus vs. time traces for all systems studied. Incorporation of BA particles enhanced the thermal resistance which started to degrade at higher temperature compared to the HDPE/flax mat composite. The HDPE/flax mat/BA composite could reduce the water uptake. Polyethylene/Flax/SiO2 Composites Composites composed of high-density polyethylene (HDPE), woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) and silicon dioxide (SiO2) were produced by hot press with nano spraying technique. The SiO2 slurries were sprayed by a hand onto the both surface of the woven flax fiber. The HDPE /woven flax fibers composites with and without used nano-spraying technique were produced by hot pressing in a laboratory press. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related HDPE based composites were subjected to instrumented falling weight impact test. The thermal resistance, stiffness and tensile strength properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and tensile tests, respectively. It was found that the impact energy and stiffness value of HDPE/flax composites was markedly higher than that of HDPE but reflect the effects of composite structures and flax content. Incorporation of SiO2 particles enhanced resistance to thermal degradation. It was established that the linear viscoelastic material principle are fairly applicable to convert from the modulus to the creep compliance results. Un- and Modified Polylactide (PLA) /woven Flax Fiber composites Hybrid composites composed of polypropylene (PP) or high-density polyethylene (HDPE), different flax fibers (unidirectional-, biaxial and twill2x2) and silicon dioxide (SiO2) were produced by hot press technique. The ternary polymer composite was effectively fabricated by spraying SiO2 solvents onto the surface of flax fiber. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related PP and HDPE based composites were subjected to instrumented falling weight impact test. The thermal and mechanical properties of the composites were determined by thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA), creep and stress relaxation tests, respectively. It was found that thermal decomposition temperature of the PP or HDPE/flax composites increased by the addition of SiO2 particles. The impact energy, stiffness, creep resistance and relaxation modulus value of all flax composites increased markedly compared to the PP and HDPE matrix. Time–temperature superposition (TTS) was applied to estimate the creep and relaxation modulus of the composites as a function of time in the form of a master curve. The activation energies for the all PP and HDPE composites systems studied were also calculated by using the Arrhenius equation. The generalized Maxwell model was fairly applicable to the stress relaxation results. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites Composites composed of polylactide (PLA), woven flax fiber textiles (weave style of 2x2 twill and 4x4 hopsack) and boehmite alumina (BA) were produced by hot press. The spraying technique served for the pre-dispersion of the alumina nanoparticles. The aqueous alumina slurry was produced by mixing the water with water dispersible alumina. The dispersion of the flax structures and alumina particles in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The creep and thermomechanical properties of the composites were determined in short-time creep tests (performed at various temperatures), thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the incorporation of alumina particles reduced the water uptake compared to the PLA/flax blends. The impact energy and stiffness value of PLA/flax blends was markedly higher than that of PLA but reflected the effects of composite structures. Incorporation of alumina particles enhanced storage modulus and the creep resistance compared to the PLA/flax blends but slightly incremented thermal resistance at high temperature. No clear trend in the flax weave style- effect was found in the thermal behaviour. The creep master curves were constructed by applying the time-temperature superposition (TTS) principle. The Findley power law could satisfactorily describe the creep compliance vs. time traces for all systems studied. Poly(hydroxybutyrate-co-hydroxyvalerate)/sisal natural fiber/clay composites Poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) biocomposites different sisal containing with the fiber length of 0.25 and 5 mm, and addition of clay particles were prepared by hot compression technique. Silane (Bis(triethoxysilylpropyl)tetrasulfide) treatment has been used to modify in order to enhance the properties of related hybrid composites. The all composites were subject to water absorption test. The mechanical properties of hybrid composites such as tensile stiffness and strength, toughness and hardness determined in tensile, impact and hardness tests, respectively. It was found that tensile strength, stiffness and impact strength of long sisal fiber improved with increasing fiber content. Hardness of short sisal fiber improved with increasing fiber content. Treated Silane of long fibers at 20 wt.% loading was found to enhance the tensile strength fiber by 10% and impact strength by 750% as compared to the neat PHBV. Note that this feature was also confirmed by the appearance of a scanning electron microscopy. Moreover, the hardness and water resistance of the PHBV/sisal composites increased by the addition of clay particles. The diffusion coefficient for the PHBV and hybrid composites systems studied were also calculated
Bioverbundwerkstoffe aus biologisch abbaubarem Polymer als Matrix und Naturfasern als Verstärkung sind ohne weiteres umweltfreundliche Materialien. Beide Bestandsmaterialien sind vollständig biologisch abbaubar und hinterlassen keine schädlichen Bestandteile auf der Erde zurück. Die als Verstärkung verwendeten Naturfasern wurden aufgrund ihrer Vorteile gegenüber Glasfasern, wie z.B. geringe Kosten, hohe spezifische Festigkeit und Steifigkeit, geringe Dichte, Erneuerbarkeit und Kompostierbarkeit ausgesucht. Der Hauptfokus dieser Arbeit lag darin Naturfasern und/oder Nanopartikel mit Polyethylen (PE), Polypropylen (PP) und Polylactid (PLA) herzustellen, sowie Poly-Hydroxybutyrat-Co-Hydroxyvalerat (PHBV) Matrizen und deren Struktur-Eigenschaft-Verhältnis zu bestimmen. Die folgenden Kurzfassungen der vorliegenden Forschungsarbeit sind vielfältig: BINÄRE VERBUNDWERKSTOFFE Polylactid (PLA)/ Flachsmatten-Verbundwerkstoffe Die Polylactid (PLA)/Flachsmatte und modifizierte PLA/Flachsmatten-Verbundwerkstoffe wurden im Pressverfahren hergestellt. Als Modifikator für das PLA wurden zwei nicht regulierte Wachs/Ethylen-Acrylat-Copolymer/Butyl-Acrylat und Acryl Additive verwendet. Die Verteilung der Flachsmatte in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen und thermischen Eigenschaften der Verbundwerkstoffe wurden im Zugversuch, der thermogravimetrische Analyse (TGA) und der dynamisch mechanischen Thermoanalyse (DMTA) jeweils bestimmt. Es zeigte sich, dass die PLA/Flachsmatten-basierten Verbundwerkstoffe eine erhöhte Schlagzähigkeit aufwiesen. Die Zähigkeitswerte der modifizierten PLA/Flachsmatten-Verbundwerkstoffe waren leicht verringert im Vergleich zum PLA. Die Bruchdehnungswerte zeigten eine Verbesserung der Verformbarkeit des modifizierten PLAs und dessen Verbundwerkstoffe. Nach Zugabe eines Wärme-Modifikators verbesserte sich der Wärmewiderstand auf unter Verarbeitungstemperatur des PLA und hatte nur einen unwesentlichen Einfluss auf die Glasübergangstemperatur des PLA. Die Hauptkurve des Speichermoduls wurde mit der Zeit-Temperatur-Überlagerung (TTS) aufgestellt. Auf alle untersuchten Systeme konnte das dafür gut geeignete Prinzip der linear viskoelastischen Werkstoffe angewendet werden um die Steifigkeit in die Kriechneigung umzuwandeln. Polylactid (PLA)/Flachstextilgewebe-Verbundwerkstoffe Die Polylactid (PLA)/Flachstextilgewebe 2x2 Körper und 4x4 Gewebe mit Leinwandbindung-Verbundwerkstoffe wurden im Intervall-Pressverfahren hergestellt. Das PLA wurde mit zwei Flachsgewebeformen verstärkt. Die Verteilung der Flachs-Verbundwerkstoffstrukturen in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen Eigenschaften (Zugfestigkeit, Steifigkeit und Festigkeit) der jeweiligen Verbundwerkstoffe wurden in Zugversuchen und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Das Rasterelektronenmikroskop zeigte auf, das der Grenzflächenzwischenraum von rausgezogenen Fasern sich durch das Herstellen im Intervall-Pressverfahren verbessert hat. Auch zeigte sich, dass beide Arten der Flachs-Verbundwerkstoffe die Schlagzähigkeit der Verbundwerkstoffe erhöht im Vergleich zum puren PLA. Die Zugfestigkeit- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe waren deutlich höher als die der puren PLA und spiegeln die Effekte von Verbundwerkstoffstrukturen wieder. Die berechnete Kriechneigung im Speichermodul wurde durch die Anwendung des Zeit-Temperatur-Überlagerung (TTS) Prinzips aufgestellt. Die errechnete Kriechgeschwindigkeit der Flachs-Verbundwerkstoffe war wesentlich geringer als im puren PLA. Polyethylen und Polypropylen/Nanosilikon Dioxid/Flachs-Verbundwerkstoffe Verbundwerkstoffe hergestellt aus Polylactid (PLA), modifiziertem PLA und Flachsfasertextilgewebe (Flachsgewebeform von 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) wurden im Pressverfahren hergestellt. Zwei strukturell unterschiedliche Additive wurden verwendet um das PLA zu modifizieren. Die Verteilung der Flachs-Verbundwerkstoffstruktur wurde unter dem Rasterelektronenmikroskop (SEM) und dem computergestütztes Computer-Tomography-System (µCT) untersucht. Die PLA Verbundwerkstoffe wurden dem Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die Kriech- und thermomechanischen Eigenschaften der respektiven Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Kriechversuch bestimmt. Das modifizierte PLA und dessen Verbundwerkstoffe zeigten eine Erhöhung der Schlagzähigkeit im Vergleich zum unmodifizierten PLA. Die Einbindung von Flachs verringerte den Widerstand gegenüber thermischer Degradierung und erhöhte die Wasseraufnahme. Die Schlagenergie- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe war deutlich höher als die der PLA aber spiegelt die Effekte von Verbundwerkstoffstrukturen mit Flachsinhalt wieder. Die Hauptkurve des Speichermoduls wurde mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Datenmaterial der Hauptkurve zeigte den Effekt des modifizierten PLAs auf dem Speichermodul deutlich ausgeprägter im Bereich der Niederfrequenz. Polylactide (PLA)/Flachfasertextilgewebe/Böhmit Aluminumoxid (BA)-Verbundwerkstoffe Die textilen Bioverbundwerkstoffe wurden aus flachsfaserverstärkten Poly(Butylen Adipat-Co-Terephtalat) (PBAT) Gewebe und Vlies im Formpressverfahren mit der Folien-Stapelmethode hergestellt. Die mechanischen Eigenschaften (wie Zugfestigkeit und Steifigkeit, Biegefestigkeit, Steifigkeit und Schlagzähigkeit) der jeweiligen textilen Bioverbundwerkstoffe wurde in Zug-, Biege-, und Schlagtests ermittelt. Die PBAT basierten Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Der Vergleich der mechanischen Eigenschaften wurde zwischen reinem PBAT und textilen Verbundwerkstoffen durchgeführt. Der Einfluss der Flachsgewebeformen auf die mechanischen Eigenschaften wurde ebenfalls untersucht. Die Ergebnisse zeigten das die Festigkeit der textilen Bioverbundwerkstoffe mit der Webart der Fasern anstieg, signifikant in Bezug auf die Steifigkeit bei einer erhöhten Verdichtung der Fasern. Die 4x4 flachfasergewebten (4-Schussfaden-Windung und 4-Kettfaden-Windung) verstärkten Bioverbundwerkstoffe zeigten die höchste Festigkeit und Steifigkeit im Vergleich zu den anderen textilen Bioverbundwerkstoffen und dem puren PBAT. Dieses Resultat wurde der Beschaffenheit der 4x4-flachfasergewebten Webart zugewiesen. Das Aminopropyltriethoxysilan beeinträchtigte die mechanischen Eigenschaften und Wasseraufnahme der entstandenen Verbundlaminate durch Oberflächenkompatibilität zwischen der Flachsfaser und dem PBAT. HYBRIDE VERBUNDWERKSTOFFE Polyethylen/Nanopartikel, natürliche und tierische Verbundwerkstoffe Binäre und ternäre Verbundwerkstoffe, bestehend aus hoch dichtem Polyethylen (HDPE), Böhmit Aluminumoxid (BA) und verschiedenen natürlichen und tierischen Fasern wie Flachs, Schwammgurke (SG), Palmfaser und Schweinehaar (PH), wurden im Pressverfahren hergestellt. Vorbereitend wurden wasserhaltige BA-Suspensionen auf die HDPE/Flachsmatte gesprüht um nanopartikel/naturfaserverstärkte ternäre Polymer-Verbundwerkstoffe nach dem Trocknen zu erhalten. Die Verteilung der Natur-,Tierfasern und der BA-Partikel in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop untersucht und diskutiert. Die thermomechanischen und Spannungsrelaxation-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Stressrelaxationstest (bei unterschiedlichen Temperaturen durchgeführt) bestimmt. Die HDPE-basierten Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Es wurde festgestellt, dass alle Verbundwerkstoffsysteme eine Erhöhung der Steifigkeit und Spannungsrelaxation und eine Verminderung der Kerbschlagzähigkeit aufzeigten. Die Spannungsrelaxations-Steifigkeit von Naturfaser-, Tierfaserverbundwerkstoffen war größer im Vergleich zu reinem HDPE. Diese Steifigkeit steig deutlich an mit der Einbindung von BA. Die Hauptkurven der Relaxation wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Die Umkehrung des Findley Potenzgesetzes konnte gut für die Beschreibung der Relaxations-Steifigkeit vs. Zeitüberwachung in allen untersuchten Systemen angewendet werden. Die Einbindung der BA-Partikel erhöhte den Wärmewiderstand, welcher bei höherer Temperatur zu sinken begann im Vergleich zu HDPE/Flachsmatten-Verbundwerkstoff. Der HDPE/Flachsmatte/BA-Verbundwerkstoff konnte die Wasseraufnahme verringern. Polyethylen/Flachs/SiO Verbundwerkstoffe Verbundwerkstoffe bestehend aus hoch dichtem Polyethylen (HDPE), Flachsfasertextilgewebe (Flachsgewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Siliziumdioxid (SiO2) wurden im Pressverfahren mit Nanospritztechnik hergestellt. Die SiO2 Schlämme wurden auf beide Oberflächen des Flachsfasergewebes per Hand gesprüht. Die HDPE/ Flachsfasergewebe-Verbundwerkstoffe wurden in einer Laborpresse im Pressverfahren mit und ohne Nanospritztechnik hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Der Wärmewiderstand, Steifigkeit- und Zugfestigkeit-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA) und Zugversuchen bestimmt. Es zeigte sich, dass die Aufprallenergie und Steifigkeitswerte der HDPE/Flachs-Verbundwerkstoffe deutlich höher als die des HDPE waren aber die Effekte von Verbundwerkstoffen mit Flachsinhalt widerspiegeln. Die Einbindung von SiO2-Partikeln erhöhte den Widerstand von thermischer Degradierung. Es wurde bestimmt, das das Prinzip der linear viskoelastischen Werkstoffe gut anwendbar auf die Umwandlung der Steifigkeit zu Kriechneigungsergebnissen ist. Modifizierte und nicht modifizierte Polylactid (PLA)/Flachsfasergewebe-Verbundwerkstoffe Hybride Verbundwerkstoffe aus Polypropylen (PP) oder hoch-dichtem Polyethylen (HDPE), verschiedenen Flachsfasern (unidirektional, biaxial und 2x2 Körper) und Siliziumdioxid (SiO2) wurden im Pressverfahren hergestellt. Der ternäre Polymer-Verbundwerkstoff wurde wirkungsvoll durch das Aufbringen von SiO2 Lösemitteln auf die Oberfläche der Flachsfaser hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen PP- und HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die thermischen und mechanischen Eigenschaften der respektiven Verbundwerkstoffe wurde in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA), Kriech- und Spannungsrelaxations-Tests bestimmt. Es zeigte sich, dass die thermische Zersetzungstemperatur der PP oder HDPE/Flachs-Verbundwerkstoffe durch das Auftragen der SiO2-Partikel ansteigt. Die Aufprallenergie-, Steifigkeit-, Kriechbeständigkeit- und Relaxation-Steifigkeitn-Werte aller Flachs-Verbundwerkstoffe stiegen deutlich an im Vergleich zur PP und HDPE Matrix. Die Zeit-Temperatur-Überlagerung (TTS) wurde angewandt um die Kriech- und Relaxation-Steifigkeit für die Verbundwerkstoffe als Funktion der Zeit in Form einer Hauptkurve zu schätzen. Die Aktivierungsenergien aller untersuchten PP und HDPE-Verbundwerkstoffsysteme wurden mit der Arrhenius Gleichung errechnet. Das generalisierte Maxwell Model war gut auf die Spannungsrelaxationsergebnisse anwendbar. Polylactide (PLA)/Flachsfasertextilgewebe/Böhmit Aluminiumoxid (BA)-Verbundwerkstoffe Verbundwerkstoffe bestehend aus Polylactid (PLA), Flachfasertextilgewebe (Gewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Böhmit Aluminium (BA) wurden im Pressverfahren hergestellt. Für die Vordispergierung der Aluminiumoxid-Nanopartikel wurde die Spritztechnik angewendet. Die wasserhaltigen Aluminiumoxid-Schlämme wurden durch das Vermischen von Wasser mit wasserdispergierbarem Aluminiumoxid hergestellt. Die Verteilung der Flachsstrukturen und Aluminiumoxid-Partikeln in den Verbundwerkstoffen wurde mit einem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Die Kriech- und thermomechanischen Eigenschaften der jeweiligen Verbundwerkstoffe wurden in Kurzzeit-Kriechversuchen (bei unterschiedlichen Temperaturen durchgeführt), thermogravimetrischen Analysen (TGA) und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Es zeigte sich, dass das Einbringen der Aluminiumoxid-Partikel die Wasseraufnahme im Vergleich zu PLA/Flachs-Gemischen reduziert. Die Aufprallenergie- und Steifigkeitswerte der PLA/Flachs-Gemische waren signifikant höher als die des PLA aber spiegelten die Effekte von Verbundwerkstoffstrukturen wieder. Das Einbringen von Aluminiumoxid-Partikeln verbesserte die Lagerungs-Steifigkeit und die Kriechbeständigkeit im Vergleich zu PLA/Flachs-Gemischen, erhöhte allerdings leicht den Wärmewiderstand bei hohen Temperaturen. Kein klarer Trend in der Flachswebart konnte dem Temperaturverhalten zugeordnet werden. Die Kriech-Hauptkurven wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Findley Potenzgesetz konnte zufriedenstellend die Kriechneigung vs. Zeitüberwachung für alle untersuchten Systeme beschreiben. Poly(Hydroxybutyrat-Co-Hydroxyvalerat)/Natursisalfaser/Ton-Verbundwerkstoffe Poly(Hydroxybutyrat-Co-Hydroxyvalerat) (PHBV) Bioverbundwerkstoffe die Sisalfasern in Längen von 0,25 und 5 mm und Ton-Partikeln enthalten wurden im Heißpressverfahren hergestellt. Die Silan (Bis(Trithoxysilylpropyl)Tetrasulfide) Behandlung wurde für die Modifizierung verwendet um die Eigenschaften von ähnlichen hybriden Verbundwerkstoffen zu verbessern. Alle Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Die mechanischen Eigenschaften der jeweiligen hybriden Verbundwerkstoffe wie Zugsteifigkeit und Festigkeit, Zähigkeit und Härte wurden in Zugversuchen, Schlagtests und Härteprüfungen bestimmt. Es zeigte sich, dass die Zugfestigkeit, Steifigkeit und Schlagzähigkeit von langen Sisalfasern sich mit der Erhöhung des Fasergehalts verbessert. Behandeltes Silan von langen Fasern mit 20 wt.% Belastung zeigte eine Verbesserung der Faser-Zugfestigkeit um 10% und Schlagzähigkeit von 750% im Vergleich zu reinem PHBV. Diese Besonderheit wurde auch von einem Rasterelektronenmikroskop bestätigt. Weiterhin ist die Härte und Wasserbeständigkeit in PHBV/Sisal-Verbundwerkstoffen durch das Einbringen von Ton-Partikeln angestiegen. Die Diffusionskoeffizienten für die untersuchten PHBV- und hybriden Verbundwerkstoffsysteme wurden auch errechnet
Style APA, Harvard, Vancouver, ISO itp.
13

Siengchin, Suchart. "Natural Fiber Reinforced Thermoplastics". Doctoral thesis, Universitätsverlag der Technischen Universität Chemnitz, 2015. https://monarch.qucosa.de/id/qucosa%3A20671.

Pełny tekst źródła
Streszczenie:
Biocomposites made from biodegradable polymer as matrix and natural fiber as reinforcement are certainly environmentally friendly materials. Both constituent materials are fully biodegradable and do not leave any noxious components on Earth. The natural fibers have been used as reinforcement due to their advantages compared to glass fibers such as low cost, high specific strength and modulus, low density, renewability and biodegradability. Major aims of this work were to produce natural fibers and/or nanoparticles with polyethylene (PE), polypropylene (PP) and polylactide (PLA), poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) matrices and determine their structure-property relationships. Following abstracts of the present research work are manifold: BINARY COMPOSITES Polylactide (PLA)/flax mat composites The polylactide (PLA)/flax mat and modified PLA/flax mat composites were produced by hot press technique. Two additives of non-regulated wax/ethylene acrylate copolymer/butyl acrylate and acrylic were used as modifier for PLA. The dispersion of the flax mat in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical and thermal properties of the composites were determined in tensile test, thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the PLA based composites increased the impact resistance. The tensile strength value of modified PLA/flax mat composite decreased slightly compared to the PLA. The elongation at break data indicated that an improvement in ductility of modified PLA and its composites. Moreover, addition of thermal modifier enhanced thermal resistance below processing temperature of PLA and had a marginal effect on the glass transition temperature of PLA. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. The principle of linear viscoelastic material was fairly applicable to convert from the modulus to the creep compliance for all systems studied. Polylactide (PLA)/woven flax textiles composites The polylactide (PLA)/woven flax textiles 2x2 twill and 4x4 hopsack composites were produced by interval hot press technique. Two weave styles of flax used to reinforce in PLA. The dispersion of the flax composite structures in the composites was inspected in scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical properties (tensile, stiffness and strength) of the composites were determined in tensile and dynamic-mechanical thermal analysis (DMTA) tests, respectively. SEM observed that the interfacial gaps around pulled-out fibers were improved when produced by the interval hot press. It was also found that the both styles of flax composites increased the impact resistance compared to the neat PLA. The tensile strength and stiffness value of PLA/flax composites were markedly higher than that of the neat PLA and reflect the effects of composite structures. The calculated storage creep compliance was constructed by applying the time-temperature superposition (TTS) principle. The calculated creep response of these flax composites was much lower than that of the neat PLA. Polyethylene and polypropylene/nano-silicon dioxide/flax composites Composites composed of polylactide (PLA), modified PLA and woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) were produced by hot press technique. Two structurally different additives used to modify PLA. The dispersion of the flax composite structures in the composites was studied by scanning electron microscopy (SEM) and computed microtomography system (µCT). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The thermomechanical and creep properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA)and short-time creep tests, respectively. It was found that the modified PLA and its composite increased the impact resistance compared to the unmodified PLA. Incorporation of flax decreased resistance to thermal degradation and increased water uptake. The impact energy and stiffness value of PLA/flax composites was markedly higher than that of PLA but reflect the effects of composite structures and flax content. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. From the master curve data, the effect of modified PLA on the storage modulus was more pronounced in the low frequencies range. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites The textile biocomposites made from woven and non-woven flax fibre reinforced poly(butylene adipate-co-terephthalate) (PBAT) were prepared by compression moulding using film stacking method. The mechanical properties (such as tensile strength and stiffness, flexural strength and modulus, and impact strength) of textile biocomposites were determined in tensile, flexural and impact tests, respectively. The PBAT-based composites were subjected to water absorption. The comparison of the mechanical properties was made between pure PBAT and textile composites. The influence of flax weave styles on the mechanical properties was also evaluated. The results showed that the strength of the textile biocomposites was increased according to weave types of fibers, especially in the stiffness was significantly increased with the higher densification of the fibers. The 4x4-plain woven fibers (4-yard-wrap and 4-yard-weft weave direction) reinforced biocomposite indicated the highest strength and stiffness compared to the other textile biocomposites and pure PBAT. This was considered to be as the result of the character of weave style of 4x4-plain woven fibers. The aminopropyltriethoxysilane affected the mechanical properties and water absorption of the resulting composites laminates due to the surface compatibility between flax fiber and PBAT. HYBRID COMPOSITES Polyethylene/nanoparticle, natural and animal composites Binary and ternary composites composed of high-density polyethylene (HDPE), boehmite alumina (BA) and different kinds of natural-, animal fibers, like flax, sponge gourd (SG), palm and pig hair (PH) were produced by hot press technique. Aqueous BA suspensions were sprayed on the HDPE/flax mat to prepare nanoparticle/natural fiber reinforced ternary polymer composites followed by drying. The dispersion of the natural-, animal fibers and BA particles in the composites was studied by scanning electron microscopy (SEM) and discussed. The thermomechanical and stress relaxation properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and short-time stress relaxation tests (performed at various temperatures), respectively. The HDPE based composites were subjected to water absorption and instrumented falling weight impact tests. It was found that the all composites systems increased the stiffness, stress relaxation and reduced the impact toughness. The stress relaxation modulus of natural-, animal fiber composites were higher compared to that of the neat HDPE. This modulus increased greatly with in corporation of BA. The relaxation master curves were constructed by applying the time-temperature superposition (TTS) principle. The inverse of Findley power law could fairly applicable to describe the relaxation modulus vs. time traces for all systems studied. Incorporation of BA particles enhanced the thermal resistance which started to degrade at higher temperature compared to the HDPE/flax mat composite. The HDPE/flax mat/BA composite could reduce the water uptake. Polyethylene/Flax/SiO2 Composites Composites composed of high-density polyethylene (HDPE), woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) and silicon dioxide (SiO2) were produced by hot press with nano spraying technique. The SiO2 slurries were sprayed by a hand onto the both surface of the woven flax fiber. The HDPE /woven flax fibers composites with and without used nano-spraying technique were produced by hot pressing in a laboratory press. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related HDPE based composites were subjected to instrumented falling weight impact test. The thermal resistance, stiffness and tensile strength properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and tensile tests, respectively. It was found that the impact energy and stiffness value of HDPE/flax composites was markedly higher than that of HDPE but reflect the effects of composite structures and flax content. Incorporation of SiO2 particles enhanced resistance to thermal degradation. It was established that the linear viscoelastic material principle are fairly applicable to convert from the modulus to the creep compliance results. Un- and Modified Polylactide (PLA) /woven Flax Fiber composites Hybrid composites composed of polypropylene (PP) or high-density polyethylene (HDPE), different flax fibers (unidirectional-, biaxial and twill2x2) and silicon dioxide (SiO2) were produced by hot press technique. The ternary polymer composite was effectively fabricated by spraying SiO2 solvents onto the surface of flax fiber. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related PP and HDPE based composites were subjected to instrumented falling weight impact test. The thermal and mechanical properties of the composites were determined by thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA), creep and stress relaxation tests, respectively. It was found that thermal decomposition temperature of the PP or HDPE/flax composites increased by the addition of SiO2 particles. The impact energy, stiffness, creep resistance and relaxation modulus value of all flax composites increased markedly compared to the PP and HDPE matrix. Time–temperature superposition (TTS) was applied to estimate the creep and relaxation modulus of the composites as a function of time in the form of a master curve. The activation energies for the all PP and HDPE composites systems studied were also calculated by using the Arrhenius equation. The generalized Maxwell model was fairly applicable to the stress relaxation results. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites Composites composed of polylactide (PLA), woven flax fiber textiles (weave style of 2x2 twill and 4x4 hopsack) and boehmite alumina (BA) were produced by hot press. The spraying technique served for the pre-dispersion of the alumina nanoparticles. The aqueous alumina slurry was produced by mixing the water with water dispersible alumina. The dispersion of the flax structures and alumina particles in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The creep and thermomechanical properties of the composites were determined in short-time creep tests (performed at various temperatures), thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the incorporation of alumina particles reduced the water uptake compared to the PLA/flax blends. The impact energy and stiffness value of PLA/flax blends was markedly higher than that of PLA but reflected the effects of composite structures. Incorporation of alumina particles enhanced storage modulus and the creep resistance compared to the PLA/flax blends but slightly incremented thermal resistance at high temperature. No clear trend in the flax weave style- effect was found in the thermal behaviour. The creep master curves were constructed by applying the time-temperature superposition (TTS) principle. The Findley power law could satisfactorily describe the creep compliance vs. time traces for all systems studied. Poly(hydroxybutyrate-co-hydroxyvalerate)/sisal natural fiber/clay composites Poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) biocomposites different sisal containing with the fiber length of 0.25 and 5 mm, and addition of clay particles were prepared by hot compression technique. Silane (Bis(triethoxysilylpropyl)tetrasulfide) treatment has been used to modify in order to enhance the properties of related hybrid composites. The all composites were subject to water absorption test. The mechanical properties of hybrid composites such as tensile stiffness and strength, toughness and hardness determined in tensile, impact and hardness tests, respectively. It was found that tensile strength, stiffness and impact strength of long sisal fiber improved with increasing fiber content. Hardness of short sisal fiber improved with increasing fiber content. Treated Silane of long fibers at 20 wt.% loading was found to enhance the tensile strength fiber by 10% and impact strength by 750% as compared to the neat PHBV. Note that this feature was also confirmed by the appearance of a scanning electron microscopy. Moreover, the hardness and water resistance of the PHBV/sisal composites increased by the addition of clay particles. The diffusion coefficient for the PHBV and hybrid composites systems studied were also calculated.
Bioverbundwerkstoffe aus biologisch abbaubarem Polymer als Matrix und Naturfasern als Verstärkung sind ohne weiteres umweltfreundliche Materialien. Beide Bestandsmaterialien sind vollständig biologisch abbaubar und hinterlassen keine schädlichen Bestandteile auf der Erde zurück. Die als Verstärkung verwendeten Naturfasern wurden aufgrund ihrer Vorteile gegenüber Glasfasern, wie z.B. geringe Kosten, hohe spezifische Festigkeit und Steifigkeit, geringe Dichte, Erneuerbarkeit und Kompostierbarkeit ausgesucht. Der Hauptfokus dieser Arbeit lag darin Naturfasern und/oder Nanopartikel mit Polyethylen (PE), Polypropylen (PP) und Polylactid (PLA) herzustellen, sowie Poly-Hydroxybutyrat-Co-Hydroxyvalerat (PHBV) Matrizen und deren Struktur-Eigenschaft-Verhältnis zu bestimmen. Die folgenden Kurzfassungen der vorliegenden Forschungsarbeit sind vielfältig: BINÄRE VERBUNDWERKSTOFFE Polylactid (PLA)/ Flachsmatten-Verbundwerkstoffe Die Polylactid (PLA)/Flachsmatte und modifizierte PLA/Flachsmatten-Verbundwerkstoffe wurden im Pressverfahren hergestellt. Als Modifikator für das PLA wurden zwei nicht regulierte Wachs/Ethylen-Acrylat-Copolymer/Butyl-Acrylat und Acryl Additive verwendet. Die Verteilung der Flachsmatte in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen und thermischen Eigenschaften der Verbundwerkstoffe wurden im Zugversuch, der thermogravimetrische Analyse (TGA) und der dynamisch mechanischen Thermoanalyse (DMTA) jeweils bestimmt. Es zeigte sich, dass die PLA/Flachsmatten-basierten Verbundwerkstoffe eine erhöhte Schlagzähigkeit aufwiesen. Die Zähigkeitswerte der modifizierten PLA/Flachsmatten-Verbundwerkstoffe waren leicht verringert im Vergleich zum PLA. Die Bruchdehnungswerte zeigten eine Verbesserung der Verformbarkeit des modifizierten PLAs und dessen Verbundwerkstoffe. Nach Zugabe eines Wärme-Modifikators verbesserte sich der Wärmewiderstand auf unter Verarbeitungstemperatur des PLA und hatte nur einen unwesentlichen Einfluss auf die Glasübergangstemperatur des PLA. Die Hauptkurve des Speichermoduls wurde mit der Zeit-Temperatur-Überlagerung (TTS) aufgestellt. Auf alle untersuchten Systeme konnte das dafür gut geeignete Prinzip der linear viskoelastischen Werkstoffe angewendet werden um die Steifigkeit in die Kriechneigung umzuwandeln. Polylactid (PLA)/Flachstextilgewebe-Verbundwerkstoffe Die Polylactid (PLA)/Flachstextilgewebe 2x2 Körper und 4x4 Gewebe mit Leinwandbindung-Verbundwerkstoffe wurden im Intervall-Pressverfahren hergestellt. Das PLA wurde mit zwei Flachsgewebeformen verstärkt. Die Verteilung der Flachs-Verbundwerkstoffstrukturen in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen Eigenschaften (Zugfestigkeit, Steifigkeit und Festigkeit) der jeweiligen Verbundwerkstoffe wurden in Zugversuchen und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Das Rasterelektronenmikroskop zeigte auf, das der Grenzflächenzwischenraum von rausgezogenen Fasern sich durch das Herstellen im Intervall-Pressverfahren verbessert hat. Auch zeigte sich, dass beide Arten der Flachs-Verbundwerkstoffe die Schlagzähigkeit der Verbundwerkstoffe erhöht im Vergleich zum puren PLA. Die Zugfestigkeit- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe waren deutlich höher als die der puren PLA und spiegeln die Effekte von Verbundwerkstoffstrukturen wieder. Die berechnete Kriechneigung im Speichermodul wurde durch die Anwendung des Zeit-Temperatur-Überlagerung (TTS) Prinzips aufgestellt. Die errechnete Kriechgeschwindigkeit der Flachs-Verbundwerkstoffe war wesentlich geringer als im puren PLA. Polyethylen und Polypropylen/Nanosilikon Dioxid/Flachs-Verbundwerkstoffe Verbundwerkstoffe hergestellt aus Polylactid (PLA), modifiziertem PLA und Flachsfasertextilgewebe (Flachsgewebeform von 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) wurden im Pressverfahren hergestellt. Zwei strukturell unterschiedliche Additive wurden verwendet um das PLA zu modifizieren. Die Verteilung der Flachs-Verbundwerkstoffstruktur wurde unter dem Rasterelektronenmikroskop (SEM) und dem computergestütztes Computer-Tomography-System (µCT) untersucht. Die PLA Verbundwerkstoffe wurden dem Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die Kriech- und thermomechanischen Eigenschaften der respektiven Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Kriechversuch bestimmt. Das modifizierte PLA und dessen Verbundwerkstoffe zeigten eine Erhöhung der Schlagzähigkeit im Vergleich zum unmodifizierten PLA. Die Einbindung von Flachs verringerte den Widerstand gegenüber thermischer Degradierung und erhöhte die Wasseraufnahme. Die Schlagenergie- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe war deutlich höher als die der PLA aber spiegelt die Effekte von Verbundwerkstoffstrukturen mit Flachsinhalt wieder. Die Hauptkurve des Speichermoduls wurde mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Datenmaterial der Hauptkurve zeigte den Effekt des modifizierten PLAs auf dem Speichermodul deutlich ausgeprägter im Bereich der Niederfrequenz. Polylactide (PLA)/Flachfasertextilgewebe/Böhmit Aluminumoxid (BA)-Verbundwerkstoffe Die textilen Bioverbundwerkstoffe wurden aus flachsfaserverstärkten Poly(Butylen Adipat-Co-Terephtalat) (PBAT) Gewebe und Vlies im Formpressverfahren mit der Folien-Stapelmethode hergestellt. Die mechanischen Eigenschaften (wie Zugfestigkeit und Steifigkeit, Biegefestigkeit, Steifigkeit und Schlagzähigkeit) der jeweiligen textilen Bioverbundwerkstoffe wurde in Zug-, Biege-, und Schlagtests ermittelt. Die PBAT basierten Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Der Vergleich der mechanischen Eigenschaften wurde zwischen reinem PBAT und textilen Verbundwerkstoffen durchgeführt. Der Einfluss der Flachsgewebeformen auf die mechanischen Eigenschaften wurde ebenfalls untersucht. Die Ergebnisse zeigten das die Festigkeit der textilen Bioverbundwerkstoffe mit der Webart der Fasern anstieg, signifikant in Bezug auf die Steifigkeit bei einer erhöhten Verdichtung der Fasern. Die 4x4 flachfasergewebten (4-Schussfaden-Windung und 4-Kettfaden-Windung) verstärkten Bioverbundwerkstoffe zeigten die höchste Festigkeit und Steifigkeit im Vergleich zu den anderen textilen Bioverbundwerkstoffen und dem puren PBAT. Dieses Resultat wurde der Beschaffenheit der 4x4-flachfasergewebten Webart zugewiesen. Das Aminopropyltriethoxysilan beeinträchtigte die mechanischen Eigenschaften und Wasseraufnahme der entstandenen Verbundlaminate durch Oberflächenkompatibilität zwischen der Flachsfaser und dem PBAT. HYBRIDE VERBUNDWERKSTOFFE Polyethylen/Nanopartikel, natürliche und tierische Verbundwerkstoffe Binäre und ternäre Verbundwerkstoffe, bestehend aus hoch dichtem Polyethylen (HDPE), Böhmit Aluminumoxid (BA) und verschiedenen natürlichen und tierischen Fasern wie Flachs, Schwammgurke (SG), Palmfaser und Schweinehaar (PH), wurden im Pressverfahren hergestellt. Vorbereitend wurden wasserhaltige BA-Suspensionen auf die HDPE/Flachsmatte gesprüht um nanopartikel/naturfaserverstärkte ternäre Polymer-Verbundwerkstoffe nach dem Trocknen zu erhalten. Die Verteilung der Natur-,Tierfasern und der BA-Partikel in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop untersucht und diskutiert. Die thermomechanischen und Spannungsrelaxation-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Stressrelaxationstest (bei unterschiedlichen Temperaturen durchgeführt) bestimmt. Die HDPE-basierten Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Es wurde festgestellt, dass alle Verbundwerkstoffsysteme eine Erhöhung der Steifigkeit und Spannungsrelaxation und eine Verminderung der Kerbschlagzähigkeit aufzeigten. Die Spannungsrelaxations-Steifigkeit von Naturfaser-, Tierfaserverbundwerkstoffen war größer im Vergleich zu reinem HDPE. Diese Steifigkeit steig deutlich an mit der Einbindung von BA. Die Hauptkurven der Relaxation wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Die Umkehrung des Findley Potenzgesetzes konnte gut für die Beschreibung der Relaxations-Steifigkeit vs. Zeitüberwachung in allen untersuchten Systemen angewendet werden. Die Einbindung der BA-Partikel erhöhte den Wärmewiderstand, welcher bei höherer Temperatur zu sinken begann im Vergleich zu HDPE/Flachsmatten-Verbundwerkstoff. Der HDPE/Flachsmatte/BA-Verbundwerkstoff konnte die Wasseraufnahme verringern. Polyethylen/Flachs/SiO Verbundwerkstoffe Verbundwerkstoffe bestehend aus hoch dichtem Polyethylen (HDPE), Flachsfasertextilgewebe (Flachsgewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Siliziumdioxid (SiO2) wurden im Pressverfahren mit Nanospritztechnik hergestellt. Die SiO2 Schlämme wurden auf beide Oberflächen des Flachsfasergewebes per Hand gesprüht. Die HDPE/ Flachsfasergewebe-Verbundwerkstoffe wurden in einer Laborpresse im Pressverfahren mit und ohne Nanospritztechnik hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Der Wärmewiderstand, Steifigkeit- und Zugfestigkeit-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA) und Zugversuchen bestimmt. Es zeigte sich, dass die Aufprallenergie und Steifigkeitswerte der HDPE/Flachs-Verbundwerkstoffe deutlich höher als die des HDPE waren aber die Effekte von Verbundwerkstoffen mit Flachsinhalt widerspiegeln. Die Einbindung von SiO2-Partikeln erhöhte den Widerstand von thermischer Degradierung. Es wurde bestimmt, das das Prinzip der linear viskoelastischen Werkstoffe gut anwendbar auf die Umwandlung der Steifigkeit zu Kriechneigungsergebnissen ist. Modifizierte und nicht modifizierte Polylactid (PLA)/Flachsfasergewebe-Verbundwerkstoffe Hybride Verbundwerkstoffe aus Polypropylen (PP) oder hoch-dichtem Polyethylen (HDPE), verschiedenen Flachsfasern (unidirektional, biaxial und 2x2 Körper) und Siliziumdioxid (SiO2) wurden im Pressverfahren hergestellt. Der ternäre Polymer-Verbundwerkstoff wurde wirkungsvoll durch das Aufbringen von SiO2 Lösemitteln auf die Oberfläche der Flachsfaser hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen PP- und HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die thermischen und mechanischen Eigenschaften der respektiven Verbundwerkstoffe wurde in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA), Kriech- und Spannungsrelaxations-Tests bestimmt. Es zeigte sich, dass die thermische Zersetzungstemperatur der PP oder HDPE/Flachs-Verbundwerkstoffe durch das Auftragen der SiO2-Partikel ansteigt. Die Aufprallenergie-, Steifigkeit-, Kriechbeständigkeit- und Relaxation-Steifigkeitn-Werte aller Flachs-Verbundwerkstoffe stiegen deutlich an im Vergleich zur PP und HDPE Matrix. Die Zeit-Temperatur-Überlagerung (TTS) wurde angewandt um die Kriech- und Relaxation-Steifigkeit für die Verbundwerkstoffe als Funktion der Zeit in Form einer Hauptkurve zu schätzen. Die Aktivierungsenergien aller untersuchten PP und HDPE-Verbundwerkstoffsysteme wurden mit der Arrhenius Gleichung errechnet. Das generalisierte Maxwell Model war gut auf die Spannungsrelaxationsergebnisse anwendbar. Polylactide (PLA)/Flachsfasertextilgewebe/Böhmit Aluminiumoxid (BA)-Verbundwerkstoffe Verbundwerkstoffe bestehend aus Polylactid (PLA), Flachfasertextilgewebe (Gewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Böhmit Aluminium (BA) wurden im Pressverfahren hergestellt. Für die Vordispergierung der Aluminiumoxid-Nanopartikel wurde die Spritztechnik angewendet. Die wasserhaltigen Aluminiumoxid-Schlämme wurden durch das Vermischen von Wasser mit wasserdispergierbarem Aluminiumoxid hergestellt. Die Verteilung der Flachsstrukturen und Aluminiumoxid-Partikeln in den Verbundwerkstoffen wurde mit einem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Die Kriech- und thermomechanischen Eigenschaften der jeweiligen Verbundwerkstoffe wurden in Kurzzeit-Kriechversuchen (bei unterschiedlichen Temperaturen durchgeführt), thermogravimetrischen Analysen (TGA) und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Es zeigte sich, dass das Einbringen der Aluminiumoxid-Partikel die Wasseraufnahme im Vergleich zu PLA/Flachs-Gemischen reduziert. Die Aufprallenergie- und Steifigkeitswerte der PLA/Flachs-Gemische waren signifikant höher als die des PLA aber spiegelten die Effekte von Verbundwerkstoffstrukturen wieder. Das Einbringen von Aluminiumoxid-Partikeln verbesserte die Lagerungs-Steifigkeit und die Kriechbeständigkeit im Vergleich zu PLA/Flachs-Gemischen, erhöhte allerdings leicht den Wärmewiderstand bei hohen Temperaturen. Kein klarer Trend in der Flachswebart konnte dem Temperaturverhalten zugeordnet werden. Die Kriech-Hauptkurven wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Findley Potenzgesetz konnte zufriedenstellend die Kriechneigung vs. Zeitüberwachung für alle untersuchten Systeme beschreiben. Poly(Hydroxybutyrat-Co-Hydroxyvalerat)/Natursisalfaser/Ton-Verbundwerkstoffe Poly(Hydroxybutyrat-Co-Hydroxyvalerat) (PHBV) Bioverbundwerkstoffe die Sisalfasern in Längen von 0,25 und 5 mm und Ton-Partikeln enthalten wurden im Heißpressverfahren hergestellt. Die Silan (Bis(Trithoxysilylpropyl)Tetrasulfide) Behandlung wurde für die Modifizierung verwendet um die Eigenschaften von ähnlichen hybriden Verbundwerkstoffen zu verbessern. Alle Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Die mechanischen Eigenschaften der jeweiligen hybriden Verbundwerkstoffe wie Zugsteifigkeit und Festigkeit, Zähigkeit und Härte wurden in Zugversuchen, Schlagtests und Härteprüfungen bestimmt. Es zeigte sich, dass die Zugfestigkeit, Steifigkeit und Schlagzähigkeit von langen Sisalfasern sich mit der Erhöhung des Fasergehalts verbessert. Behandeltes Silan von langen Fasern mit 20 wt.% Belastung zeigte eine Verbesserung der Faser-Zugfestigkeit um 10% und Schlagzähigkeit von 750% im Vergleich zu reinem PHBV. Diese Besonderheit wurde auch von einem Rasterelektronenmikroskop bestätigt. Weiterhin ist die Härte und Wasserbeständigkeit in PHBV/Sisal-Verbundwerkstoffen durch das Einbringen von Ton-Partikeln angestiegen. Die Diffusionskoeffizienten für die untersuchten PHBV- und hybriden Verbundwerkstoffsysteme wurden auch errechnet.
Style APA, Harvard, Vancouver, ISO itp.
14

Eftekhari, Mohammadreza. "Creep, Fatigue, and Their Interaction at Elevated Temperatures in Thermoplastic Composites". University of Toledo / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1470388940.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Maron, Bernhard. "Beitrag zur Modellierung und Simulation des Thermoformprozesses von textilverstärkten Thermoplastverbunden". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-207535.

Pełny tekst źródła
Streszczenie:
Der komplexe Verarbeitungsprozess endlosfaserverstärkter Textilthermoplaste beeinflusst maßgeblich die resultierende textile Struktur und damit im gleichen Maße die strukturellen Eigenschaften des Verbundes. Zur vollständigen Ausschöpfung des vielversprechenden Potentials dieser innovativen Werkstoffgruppe ist es daher notwendig, die Fertigungssimulation in den Entwicklungsprozess zu integrieren. In der vorliegenden Arbeit wird eine qualitative als auch quantitative Beschreibung der komplexen Deformationsphänomenologie von Textilthermoplasten beim Thermoformen vorgenommen, wobei die eingehende Analyse der lokalen Textilthermoplaststruktur und -verformung fokussiert wird. Auf Grundlage eines umfangreichen experimentellen Prüfprogramm wird abschließend zur modellbasierten Beschreibung der Deformationsvorgänge ein neuartiges Multi-Skalen-Modell entwickelt, mit dem sich die auftretende Phänomenologie virtuell wiedergeben lässt.
Style APA, Harvard, Vancouver, ISO itp.
16

Fabre, Victor. "Étude de l'endommagement en fatigue d'un composite thermoplastique à fibres courtes : cas du polyamide 6,6 renforcé de fibres de verre courtes". Thesis, Paris, ENMP, 2015. http://www.theses.fr/2015ENMP0012.

Pełny tekst źródła
Streszczenie:
Le travail abordé dans le cadre de cette thèse constitue une contribution à la compréhension des mécanismes d'endommagement et à l'identification d'un critère de durée de vie du polyamide 6,6 renforcé à 30% en masse de fibres de verre courtes (PA66GF30), obtenu par moulage par injection, en prenant en compte les effets de la température, de la teneur en eau et des orientations de fibres induites par le procédé de fabrication. Ainsi, dans un premier temps, une campagne d'essais de caractérisation du comportement mécanique du PA66GF30, pour différentes orientations de fibres, températures, teneurs en eau et vitesses de sollicitation, a été menée. Ceux-ci ont mis en évidence le rôle de la matrice polyamide 6,6 (PA66) dans la dépendance à la température, à la teneur en eau et à la vitesse de sollicitation du comportement du PA66GF30. Dans ce sens, une triple équivalence Temps-Température-Teneur en eau du comportement du PA66 a été démontrée à l'aide de courbes maîtresses obtenues par DMA. Une nouvelle expression de la vitesse équivalente à une température et une teneur en eau de référence en a alors été déduite, dans l'objectif de pouvoir rendre compte de cette triple sensibilité dans un futur modèle de comportement. Ensuite, une campagne d'essais de fatigue dans des conditions environnementales contrôlées, a permis d'étudier les effets de l'orientation des fibres, de la température et de la teneur en eau, sur la tenue en fatigue d'éprouvettes en PA66GF30. L'analyse mécanique de ces essais a abouti à l'identification d'un critère de durée de vie, tenant compte de l'ensemble des facteurs influents. Enfin, la microtomographie des rayons X sous faisceau synchrotron a été utilisée pour étudier les mécanismes d'endommagement en fatigue présents dans le PA66GF30, suite à des analyses post-mortem et des expériences in-situ. Le dépouillement de ces observations a permis de faire la lumière sur les mécanismes d'endommagement, et de proposer un nouveau scénario d'endommagement en fatigue
The work discussed in this thesis is a contribution to the understanding of damage mechanisms and identifying a fatigue criterion of polyamide 6,6 reinforced with 30 wt% of short glass-fibres (PA66GF30), obtained by injection molding, taking into account the effects of temperature, water content and fiber orientations induced by the process. Thus, in a first step, the characterization of the mechanical behavior of PA66GF30 for different fiber orientations, temperatures, moisture contents and strain rates, was conducted. They have highlighted the role of the polyamide matrix (PA66) in the temperature, water content and strain rate behavior dependence of PA66GF30. In this sense, Time-Temperature-Water content equivalence of mechanical behaviour of PA66 was demonstrated using master curves obtained by DMA. A new expression of the equivalent strain rate at temperature reference and a water content reference was then deduced, and it is now possible to relay the triple sensitivity to strain rate, temperature and water content in only one term. Then, a fatigue test campaign in controlled environmental conditions, allowed to study the effects of fiber orientation, temperature and water content on the fatigue behaviour of PA66GF30 specimens. The mechanical analysis of these tests has led to the identification of a fatigue life criterion, taking into account all the influencing factors. Finally, the X-ray microtomography under synchrotron beam was used to study the mechanisms in fatigue damage present in the PA66GF30, following post-mortem analysis and in-situ experiments. The analysis of these observations has shed light on the mechanisms damage and, it has been proposed a new fatigue damage scenario
Style APA, Harvard, Vancouver, ISO itp.
17

Klemt, Christian. "Verfahrensentwicklung zur Einbringung endlosfaserverstärkter Thermoplaste in metallische Strukturen mittels Patchen". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-218647.

Pełny tekst źródła
Streszczenie:
Im Automobilbau kommt zunehmend das sog. Multimaterial-Design zum Einsatz, um kostenattraktiven Leichtbau in Großserienanwendungen umzusetzen und das Leichtbaupotential von strukturellen Bauteilen in bislang meist monolithischer Bauweise zu erweitern. Die Patch-technologie, bei der die Strukturertüchtigung durch die lokale und anforderungsgerechte Einbringung von endlosfaserverstärkten Faser-Kunststoff-Verbunden (FKV) in dünnwandige metallische Bauteile erfolgt, ist eine zielführende Technologie, um einen hohen Leichtbaugrad zu generieren. Eine besondere Herausforderung stellt dabei die dauerhafte, flächige Verbindung von Metall und thermoplastbasiertem FKV (TP-FKV) dar. Da die verwendeten Werkstoffe keine hinreichende chemische Kompatibilität aufweisen, wurden bislang Klebstoffe als Fügehilfsstoff genutzt, wodurch jedoch zusätzliche Prozessschritte notwendig wurden und damit verbunden häufig höhere Prozesszeiten auftraten. In dieser Arbeit werden Möglichkeiten zur Kompatibilisierung der beiden, das hybride Bauteil kennzeichnenden, Werkstoffkomponenten erarbeitet. Der Schwerpunkt wird dazu auf die Entwicklung und Charakterisierung einer inlinefähigen Vorbehandlungsmethode des metallischen Fügepartners in Kombination mit einer Modifikation des thermoplastischen FKV-Halbzeugs bzw. dessen Matrixsystems gelegt. Dabei werden die Einflüsse unterschiedlicher Vorbehandlungen und zugeordneter Vorbehandlungsparameter auf die physikalische und chemische Oberflächenbeschaffenheit des Metalls und das Haftniveau im TP-FKV/Metallverbund untersucht. Darüber hinaus werden mit Hilfe von Füllstoffen und Additiven verschiedene chemische Veränderungen des thermoplastischen Matrixsystems vorgenommen und deren Auswirkung auf die Adhäsion zwischen den Verbundpartnern charakteri-siert. Für die Anwendung des Verbundsystems TP-FKV/Metall in einem Automobil werden neben hohen mechanischen Eigenschaften (Verbundfestigkeit) insbesondere sehr gute Temperatur-, Klimawechsel- und Korrosionsbeständigkeiten gefordert, die in praxisnahen Untersuchungen nachgewiesen werden. Die gewonnenen Erkenntnisse zur prozessintegrativen Anpassung der Komponenten des Werkstoffverbundes werden anschließend in die Praxis übertragen. Dafür wird ein seriennaher Fertigungsprozess entwickelt und prototypisch umgesetzt. Der Einfluss der grundlegenden Prozessparameter Druck, Temperatur und Zeit auf die Güte der Verbindung wird evaluiert. Einfache bauteilnahe Demonstratoren werden genutzt, um die Tauglichkeit der Verbundstrategie und des entwickelten Fertigungskonzeptes der TP-FKV-Patchtechnologie für deren wirtschaftliche Anwendung in der Großserienfertigung im Umfeld der Automobilindustrie nachzuweisen.
Style APA, Harvard, Vancouver, ISO itp.
18

Denis, Yvan. "Modélisation en grandes déformations du comportement hystérétique des renforts de composites : Application à l'estampage incrémental". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI098.

Pełny tekst źródła
Streszczenie:
Les matériaux composites connaissent une croissance exponentielle d'utilisation que ce soit dans le domaine de l'aérospatial, l'aéronautique, l'automobile ou encore le sport. Cette évolution significative s'explique notamment par les excellentes propriétés mécaniques que propose ce genre de matériaux. De plus, le ratio caractéristiques/poids est extrêmement favorable à ces derniers puisqu'ils restent plus légers que les matériaux usuellement employés par le passé. Cependant, ils sont aussi extrêmement coûteux et moyennement maîtrisés comparés aux connaissances scientifiques qui existent pour les matériaux cristallins. L'outil de simulation numérique est donc devenu partie intégrante de l'amélioration des procédés de mise en forme, ce qui nécessite, entre autres, l'élaboration de modèles mécaniques. Jusqu'à maintenant, compte tenu des stratégies d'emboutissage utilisant un seul couple poinçon/matrice, les chargements étaient supposés monotones et donc les lois de comportement associées étaient hyperélastiques ou viscoélastiques. Toutefois, étant donné que la demande industrielle ne cesse de croître et la complexité des géométries demandées aussi, nous proposons au travers des travaux présentés ici, des approches innovantes et originales comme la mise en forme incrémentale et la gestion des conditions aux limites. Ces nouvelles approches induisent des variations de chargement en cisaillement ou en flexion et les modèles hyperélastiques ne sont donc plus suffisamment riches pour correctement modéliser les procédés d'estampage. L'étude du comportement hystérétique étant nouvelle pour les matériaux composites, les travaux présentés se focalisent alors sur les renforts secs. C'est ainsi qu'une approche expérimentale a été réalisée afin de connaître la réaction du tissé soumis à ce type de chargements non monotones. Puis, des modèles dissipatifs hystérétiques ont été établis en vue de les intégrer dans un logiciel de calcul par éléments finis. Enfin, des simulations numériques avec comparaisons expérimentales sont proposées, basiques au début pour valider les modèles puis plus complexes pour montrer l'intérêt de telles modélisations et de telles stratégies
Composite materials are experiencing exponential growth in use in the aerospace, aeronautics, automotive and sports sectors. This significant development is mainly due to the excellent mechanical properties offered by this type of material. In addition, the ratio characteristics/weight is extremely advantageous since they remain lighter than the materials usually used in the past. However, they are also extremely expensive and moderately understood compared to the scientific knowledge that exists for crystalline materials. Numerical simulation tool has therefore become an integral part of the improvement of shaping processes, which requires the development of mechanical models. Until now, given stamping strategies using a single punch/matrix pair, the loads were assumed to be monotonous and therefore the associated behavioural laws were hyperelastic or viscoelastic. However, given that industrial demand is constantly growing and the complexity of the geometries which is also increasing, we propose, through the work presented here, innovative and original approaches such as incremental forming and the management of boundary conditions. These new approaches induce cyclic loading variations in shear or bending and hyperelastic models are therefore no longer enough reliable to properly model stamping processes. As the study of hysteresis behaviour is new for composite materials, the work presented then focuses on dry reinforcements. Thus, an experimental approach was carried out to determine the reaction of the fabric once it was subjected to cyclic loading. Then, dissipative hysteretic models were established for integration into finite element calculation software. Finally, numerical simulations with experimental comparisons are proposed, initially basic to validate the model and then more complex to show the interest of such models and strategies
Style APA, Harvard, Vancouver, ISO itp.
19

Lu, Fang. "Caractérisation et modélisation du comportement cyclique en fatigue uniaxiale/multiaxiale des composites à fibres courtes : Thermoplastiques (PA66) renforcés de fibres de verre". Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEM072.

Pełny tekst źródła
Streszczenie:
Dans l'objectif d'améliorer la compréhension du comportement mécanique des thermoplastiques renforcés de fibres courtes (SRFP), notre étude s'est focalisée sur la caractérisation et la modélisation du comportement cyclique en fatigue du polyamide 6,6 renforcé de fibres de verre courtes à 30% en masse (PA66GF30). D'un point de vue expérimentale, des essais de fatigue en traction uniaxiale/biaxiale et en flexion 3 points ont été réalisés, dans l'objectif d'étendre le critère de durée de vie en fatigue basé sur l'énergie de déformation restituée et validé en traction uniaxiale. L'analyse mécanique de ces essais a montré que ce critère rend compte non seulement des effets de l'orientation des fibres, de la température et de la teneur en eau, mais également l'effet du type de sollicitation. D'un point de vue de la modélisation numérique, le comportement du PA66GF30 en régime linéaire est modélisé par le modèle d'homogénéisation de Mori-Tanaka et d'Advani-Tucker pour le cas élastique, et est modélisé par le modèle de Maxwell généralisé étendu au cas anisotrope pour le cas viscoélastique. De plus, la triple équivalence Temps-Température-Humidité est introduite dans le modèle. Pour le comportement en régime non linéaire, un modèle phénoménologique visco-élasto-plastique anisotrope endommageable est proposé pour modéliser le comportement cyclique en fatigue. Les paramètres du nouveau modèle visco-élasto-plastique endommageable identifiés sont validés sur les 3 types d'éprouvettes et les pièces structurales industrielles. En appliquant le critère de durée de vie en fatigue via un post-processing, la cartographie de l'énergie et de durée de vie sortante nous permet de localiser la zone de rupture potentielle et d'estimer la durée de vie de la pièce. Un facteur conservatif inférieur à 5 pour la durée de vie estimée montrent la précision de prédiction pour les premières validations. Cette étude a ainsi fournit un outil de conception pour le dimensionnement en fatigue des SFRPs, qui permet d'optimiser la géométrie des pièces ou leurs microstructures induites par le procédé de fabrication vis-à-vis à leur rigidité et leur tenue en fatigue
Aimed at better understanding the mechanical behavior of short fiber reinforced thermoplastics (SFRP), our study focused on the characterization and modeling of the cyclic fatigue behavior of polyamide 6,6 reinforced by 30 wt% of short glassfibers (PA66GF30). From the experimental point of view, uniaxial/biaxial tension-tension fatigue tests and 3-point bending fatigue tests were carried out, in order to extend the fatigue lifetime criterion based on the restored strain energy and validated in uniaxialcase. The mechanical analyses of these tests show that, this criterion accounts not only for the effects of fiber orientation,temperature and water content, but also for the type of loading. From the numerical modeling point of view, the behavior of PA66GF30 in linear regime is modeled by the homogenization model of Mori-Tanaka and Advani-Tucker for the elastic case, and is modeled by the generalized Maxwell model extended to the anisotropic case for the viscoelastic case. In addition, the triple equivalence Time-Temperature-Humidity is introduced into the model. For nonlinear regime behavior, a damageable anisotropic visco-elasto-plastic phenomenology model is proposed to caracterize the cyclical fatigue behavior. The identified parameters of new anisotropic visco-elasto-plastic damage model are validated on these 3 types of specimen and the industrial structural parts. By applying the fatigue lifetime criterion via a post-processing, the mapping of energy and lifetime allows us to locate the fracture area and to estimate the lifetime of structural parts. A conservative factor lower than 5 for estimated lifetime shows the accuracy of prediction for these first validations. As a result, our study provided a fatigue design tool for the dimensioning of SFRPs, which makes it possible to optimize the geometry of the parts or their process-induced microstructure in relation to their stiffness and fatigue behavior
Style APA, Harvard, Vancouver, ISO itp.
20

Bandaru, Aswani Kumar. "Impact studies on thermoplastic composite armors reinforced with 2D/3D fabrics". Thesis, 2017. http://localhost:8080/xmlui/handle/12345678/7265.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Lozano, Karen. "Development and characterization of a nanofiber-reinforced thermoplastic composite". Thesis, 1999. http://hdl.handle.net/1911/19406.

Pełny tekst źródła
Streszczenie:
Polypropylene composites with vapor-grown carbon nanofibers (VGCF's) as reinforcement were prepared. The fibers used have an rage diameter of 200 nm with interesting thermal, electrical and mechanical properties which make them very promising for engineering applications. Fiber purification and activation of functional groups were conducted, where amorphous carbon particles were successfully removed, achieving, high purity fibers. Sample preparation was performed using conventional plastic processing technologies. Interactions between the fibers and the matrix were analyzed by physical, mechanical and electrical properties of the composite. Thermal physical analysis on the samples showed that the presence of the fibers influenced the morphology and crystallinity of the matrix. The decomposition temperature, as well as the crystallization rate increased with increasing fiber content. The electrical resistivity of the prepared composites decreased 12 orders of magnitude providing a potential composite for ESD applications. The addition of VGCF's showed an increase in stiffness of 350. Melt viscosity values were also increased by the VGCF reinforcement. Dispersion, porosity, and bonding aspects were also analyzed.
Style APA, Harvard, Vancouver, ISO itp.
22

Liang, Jiaai. "Investigation of Failure Behaviour of a Glass-Fibre Reinforced Thermoplastic Composite". Master's thesis, 2017. http://hdl.handle.net/1885/143658.

Pełny tekst źródła
Streszczenie:
This work focuses on the fibre dominated failure of the woven thermoplastic fibre-reinforced composite. The novel experimental methodology induced failures in different deformation modes for the Glass Fibre Reinforced Polypropylene (GFRP) composite studied. Hence the path dependency effect on the failure of this material system can be studied experimentally through the three-dimensional (3D) Digital Image Correlation (DIC) system. A novel failure metric based on the strains experienced by the fibre bundles is developed. From the experimental results, this failure metric is found to be able to eliminate path dependency effect and is independent of fibre orientations. In Finite Element Analysis (FEA), this failure metric is incorporated with the simulations as a virtual tool to predict failures of the GFRP material. From the experimental results, failure envelopes with the failure metric based on the principal strain and fibre strain are developed respectively. Both failure envelopes are implemented in the FEA simulation. The simulations incorporated with the failure metric in principal strain cannot accurately predict failure for the GFRP material system. The simulations incorporated with the failure metric in fibre strain, on the contrary, are found to be able to provide predictions that have a better agreement with the experimental results.
Style APA, Harvard, Vancouver, ISO itp.
23

劉家宏. "The Property Evaluations of Woven Fabric Reinforced Thermoplastic Composite Laminated Sheet". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/gg29wb.

Pełny tekst źródła
Streszczenie:
碩士
逢甲大學
纖維與複合材料學系
103
In this study, woven fabrics are made with different warp/weft combinations in order to form carbon fibers/carbon fibers (CC),glass fibers/carbon fibers (GC),carbon fibers/basalt fibers (CB),and glass fibers/basalt fibers (GB) woven fabrics. The woven fabrics are then enclosed with two layers of PET laminates. Next,they undergo the hot press molding to form CC, GC, CB, and GB composites with a thickness of 1mm, 1.25mm, 1.5mm, 1.75mm, and 2mm. The control group is CC laminated with two epoxy laminates. Five laminated composite types are compared with their compositions and thicknesses in terms of the tensile strength, flexural strength, impact strength, and electromagnetic interference shielding effectiveness (EMI SE). An optical microscope is used to observe themorphology of the fractured composites that are collected from mechanical tests in order to compare with their corresponding tensile strength, flexural strength, and impact strength. The control group has the optimal mechanical properties, followed by CC, GC, CB, and eventually GB composites. In addition, the mechanical properties are also proportional their thickness, and the morphology observations indicate that the laminated composites are primarily reinforced by the woven fabrics that bear the external force. The EMI SE test results indicate that the CC composites and control group both attain an EMI SE of 55dB, that reaches the EMI SE level required by livelihood necessities.
Style APA, Harvard, Vancouver, ISO itp.
24

Ferreira, Isaac Alves. "Fibre-Reinforced Thermoplastic Composite Parts Produced by Additive Manufacturing: A Comprehensive Characterization Study". Doctoral thesis, 2020. https://hdl.handle.net/10216/126714.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

(9012281), Pasita Pibulchinda. "The Effects of Fiber Orientation State of Extrusion Deposition Additive Manufactured Fiber-Filled Thermoplastic Polymers". Thesis, 2020.

Znajdź pełny tekst źródła
Streszczenie:

Extrusion Deposition Additive Manufacturing (EDAM) is a process in which fiber-filled thermoplastic polymers are mixed and melted in an extruder and deposited onto a build plate in a layer-by-layer basis. Anisotropy caused by flow-induced orientation of discontinuous fibers along with the non-isothermal cooling process gives rise to internal stresses in printed parts which results in part deformation. The deformation and residual stresses can be abated by modifying the fiber orientation in the extrudate to best suit the print geometry. To that end, the focus of this research is on understanding the effect of fiber orientation state and fiber properties on effective properties of the printed bead and the final deformation of a part. The properties of three different orientation tensors of glass fiber-filled polyamide and carbon fiber-filled polyamide were experimentally and virtually characterized via micromechanics. A thermo-mechanical simulation framework developed in ABAQUS© was used to understand the effects of the varying fiber orientation tensor and fiber properties on the final deformation of printed parts. In particular, a medium-size geometry that is prone to high deformation was simulated and compared among the three orientation tensors and two material systems. This serves to be a good preliminary study to understand microscopic properties induced deformations in EDAM.

Style APA, Harvard, Vancouver, ISO itp.
26

Maron, Bernhard. "Beitrag zur Modellierung und Simulation des Thermoformprozesses von textilverstärkten Thermoplastverbunden". Doctoral thesis, 2015. https://tud.qucosa.de/id/qucosa%3A29680.

Pełny tekst źródła
Streszczenie:
Der komplexe Verarbeitungsprozess endlosfaserverstärkter Textilthermoplaste beeinflusst maßgeblich die resultierende textile Struktur und damit im gleichen Maße die strukturellen Eigenschaften des Verbundes. Zur vollständigen Ausschöpfung des vielversprechenden Potentials dieser innovativen Werkstoffgruppe ist es daher notwendig, die Fertigungssimulation in den Entwicklungsprozess zu integrieren. In der vorliegenden Arbeit wird eine qualitative als auch quantitative Beschreibung der komplexen Deformationsphänomenologie von Textilthermoplasten beim Thermoformen vorgenommen, wobei die eingehende Analyse der lokalen Textilthermoplaststruktur und -verformung fokussiert wird. Auf Grundlage eines umfangreichen experimentellen Prüfprogramm wird abschließend zur modellbasierten Beschreibung der Deformationsvorgänge ein neuartiges Multi-Skalen-Modell entwickelt, mit dem sich die auftretende Phänomenologie virtuell wiedergeben lässt.
Style APA, Harvard, Vancouver, ISO itp.
27

Klemt, Christian. "Verfahrensentwicklung zur Einbringung endlosfaserverstärkter Thermoplaste in metallische Strukturen mittels Patchen". Doctoral thesis, 2016. https://tud.qucosa.de/id/qucosa%3A30149.

Pełny tekst źródła
Streszczenie:
Im Automobilbau kommt zunehmend das sog. Multimaterial-Design zum Einsatz, um kostenattraktiven Leichtbau in Großserienanwendungen umzusetzen und das Leichtbaupotential von strukturellen Bauteilen in bislang meist monolithischer Bauweise zu erweitern. Die Patch-technologie, bei der die Strukturertüchtigung durch die lokale und anforderungsgerechte Einbringung von endlosfaserverstärkten Faser-Kunststoff-Verbunden (FKV) in dünnwandige metallische Bauteile erfolgt, ist eine zielführende Technologie, um einen hohen Leichtbaugrad zu generieren. Eine besondere Herausforderung stellt dabei die dauerhafte, flächige Verbindung von Metall und thermoplastbasiertem FKV (TP-FKV) dar. Da die verwendeten Werkstoffe keine hinreichende chemische Kompatibilität aufweisen, wurden bislang Klebstoffe als Fügehilfsstoff genutzt, wodurch jedoch zusätzliche Prozessschritte notwendig wurden und damit verbunden häufig höhere Prozesszeiten auftraten. In dieser Arbeit werden Möglichkeiten zur Kompatibilisierung der beiden, das hybride Bauteil kennzeichnenden, Werkstoffkomponenten erarbeitet. Der Schwerpunkt wird dazu auf die Entwicklung und Charakterisierung einer inlinefähigen Vorbehandlungsmethode des metallischen Fügepartners in Kombination mit einer Modifikation des thermoplastischen FKV-Halbzeugs bzw. dessen Matrixsystems gelegt. Dabei werden die Einflüsse unterschiedlicher Vorbehandlungen und zugeordneter Vorbehandlungsparameter auf die physikalische und chemische Oberflächenbeschaffenheit des Metalls und das Haftniveau im TP-FKV/Metallverbund untersucht. Darüber hinaus werden mit Hilfe von Füllstoffen und Additiven verschiedene chemische Veränderungen des thermoplastischen Matrixsystems vorgenommen und deren Auswirkung auf die Adhäsion zwischen den Verbundpartnern charakteri-siert. Für die Anwendung des Verbundsystems TP-FKV/Metall in einem Automobil werden neben hohen mechanischen Eigenschaften (Verbundfestigkeit) insbesondere sehr gute Temperatur-, Klimawechsel- und Korrosionsbeständigkeiten gefordert, die in praxisnahen Untersuchungen nachgewiesen werden. Die gewonnenen Erkenntnisse zur prozessintegrativen Anpassung der Komponenten des Werkstoffverbundes werden anschließend in die Praxis übertragen. Dafür wird ein seriennaher Fertigungsprozess entwickelt und prototypisch umgesetzt. Der Einfluss der grundlegenden Prozessparameter Druck, Temperatur und Zeit auf die Güte der Verbindung wird evaluiert. Einfache bauteilnahe Demonstratoren werden genutzt, um die Tauglichkeit der Verbundstrategie und des entwickelten Fertigungskonzeptes der TP-FKV-Patchtechnologie für deren wirtschaftliche Anwendung in der Großserienfertigung im Umfeld der Automobilindustrie nachzuweisen.:1 Motivation 1.1 Einleitung und Problemstellung 1.2 Zielsetzung und Lösungsansatz 2 Theoretische Grundlagen und Stand der Technik 2.1 TP-FKV/Metall-Verbunde 2.2 Fügetechnik von TP-FKV/Metall-Verbunden 2.3 Adhäsion in stoffschlüssigen FKV/Metall-Verbunden 2.3.1 Mechanische Adhäsion 2.3.2 Spezifische Adhäsion 2.3.2.1 Chemische Adhäsion (Chemisorption) 2.3.2.2 Adsorptionstheorie 2.3.2.3 Polarisationstheorie 2.4 Grenzschichtmodell des TP-FKV/Metall-Verbundes 2.4.1 Interleaf-Konzept 2.4.2 Wirkung von siliziumorganischen Verbindungen in der Grenzfläche 2.4.3 Grenzschichtmodell 2.5 Oberflächenbehandlung von Substraten 2.6 Methoden der Haftungsprüfung 2.7 Methoden zur Analyse von Kunststoffen 2.8 Prüfverfahren zur Alterung automobiler Bauteile 2.9 Verfahren zur prozessintegrativen Herstellung hybrider Bauteile 3 FKV-Patchen als hybride Leichtbautechnologie 3.1 Duroplastpatchtechnologie 3.2 Thermoplastpatchtechnologie 3.3 Ableitung der Notwendigkeit zur Eigenentwicklung 3.3.1 Einsatzpotentiale der TP-FKV-Patchtechnologie 3.3.2 Anforderungen an TP-FKV/Metall-Bauteile für automobile Rohbauanwendungen 3.3.3 Schlussfolgerung zur Eigenentwicklung 4 Konzeption eines Fertigungsprozesses für TP-FKV/Metall-Verbunde 4.1 Vorüberlegungen zum Fertigungsprozess 4.2 Voruntersuchungen 4.2.1 Strategien zur Herstellung von TP-FKV/Metall-Hybridverbunden 4.2.2 Schlussfolgerungen zur Herstellung von FKV/Metall-Hybridverbunden 5 Funktionalisierung der Komponenten des Hybridverbundes 5.1 Modifikation der metallischen Verbundkomponente 5.1.1 Vorbehandlungsmethoden 5.1.2 Einfluss der Vorbehandlung auf die Haftung im TP-FKV/Metall-Verbund 5.1.3 Zusammenfassung zur Vorbehandlung der metallischen Komponente 5.2 Modifikation des thermoplastischen Matrixwerkstoffs 5.2.1 Anforderungen an die Modifikation 5.2.2 Materialauswahl zur Modifikation des TP-FKV-Matrixwerkstoffs 5.2.3 Herstellung modifizierter Thermoplasthalbzeuge 5.2.4 Eigenschaften modifizierter Thermoplasthalbzeuge 5.2.5 Einfluss der Thermoplastmodifikation auf die Verbundfestigkeit 5.2.6 Zusammenfassung zur Modifikation des thermoplastischen Matrixwerkstoffs 5.3 Übertragung der Laborerkenntnisse auf einen praxisgerechten Prozess 5.3.1 Vorbehandlung des metallischen Substrats mittels SaCo-Saugstrahlen 5.3.2 Herstellung matrixmodifizierter TP-FKV-Halbzeuge 5.3.3 Charakterisierung der Verbundfestigkeit von TP-FKV/Metall-Hybridverbunden 5.3.4 Zusammenfassung der Verbundstrategie des TP-FKV/Metall Hybridverbundes 6 Entwicklung eines durchgängigen und seriennahen Produktionsprozesses und Nachweis der Praxisfähigkeit am Beispiel eines Technologiedemonstrators 6.1 Serienkonzept 6.2 Ableitung eines Technologiedemonstrators 6.3 Anlagentechnik 6.4 Fertigungsparameter zur Herstellung des Technologiedemonstrators 6.5 Abhängigkeit der Randschichtausbildung von der Profilgeometrie 6.6 Einfluss des automobilen Fertigungsprozesses auf die Bauteilmaßhaltigkeit 6.7 Validierung des Technologiedemonstrators 7 Zusammenfassung Literaturverzeichnis Anhang A Schneckenkonfiguration und Extrusionsparameter zur Herstellung modifizierter PA6-Granulate B Extrusionsparameter zur Herstellung modifizierter PA6-Folien C Untersuchung der rheologischen, thermischen und mechanischen Eigenschaften von modifiziertem Polyamid 6 C1. Rheologische Eigenschaften – Bestimmung der Scherviskosität C2. Mechanische Eigenschaften – temperaturabhängiger Elastizitätsmodul C3. Thermisches Ausdehnungsverhalten – Bestimmung des differentiellen Wärmeausdehnungskoeffizienten D Bruchverhalten randschichtmodifizierter FKV-Halbzeuge im TP-FKV/Metall-Verbund E Mikroskopie gepatchter Demonstratorprofile
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii