Gotowa bibliografia na temat „Thermoplastic composite armors reinforced”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Thermoplastic composite armors reinforced”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Thermoplastic composite armors reinforced"
Bandaru, Aswani Kumar, Vikrant V. Chavan, Suhail Ahmad, R. Alagirusamy i Naresh Bhatnagar. "Ballistic impact response of Kevlar® reinforced thermoplastic composite armors". International Journal of Impact Engineering 89 (marzec 2016): 1–13. http://dx.doi.org/10.1016/j.ijimpeng.2015.10.014.
Pełny tekst źródłaBandaru, Aswani Kumar, Suhail Ahmad i Naresh Bhatnagar. "Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics". Composites Part A: Applied Science and Manufacturing 97 (czerwiec 2017): 151–65. http://dx.doi.org/10.1016/j.compositesa.2016.12.007.
Pełny tekst źródłaMayer, P., D. Pyka, K. Jamroziak, J. Pach i M. Bocian. "Experimental and Numerical Studies on Ballistic Laminates on the Polyethylene and Polypropylene Matrix". Journal of Mechanics 35, nr 02 (15.11.2017): 187–97. http://dx.doi.org/10.1017/jmech.2017.103.
Pełny tekst źródłaAyvaz, Mehmet, i Hakan Cetinel. "Ballistic performance of powder metal Al5Cu-B4C composite as monolithic and laminated armor". Materials Testing 63, nr 6 (1.06.2021): 512–18. http://dx.doi.org/10.1515/mt-2020-0084.
Pełny tekst źródłaKling, Veronika, Sohel Rana i Raul Fangueiro. "Fibre Reinforced Thermoplastic Composite Rods". Materials Science Forum 730-732 (listopad 2012): 331–36. http://dx.doi.org/10.4028/www.scientific.net/msf.730-732.331.
Pełny tekst źródłaVasquez, Jasmin Z., i Leslie Joy L. Diaz. "Unidirectional Abaca Fiber Reinforced Thermoplastic Starch Composite". Materials Science Forum 894 (marzec 2017): 56–61. http://dx.doi.org/10.4028/www.scientific.net/msf.894.56.
Pełny tekst źródłaAzrin Hani Abdul, Rashid, Ahmad Roslan, Mariatti Jaafar, Mohd Nazrul Roslan i Saparudin Ariffin. "Mechanical Properties Evaluation of Woven Coir and Kevlar Reinforced Epoxy Composites". Advanced Materials Research 277 (lipiec 2011): 36–42. http://dx.doi.org/10.4028/www.scientific.net/amr.277.36.
Pełny tekst źródłaOstgathe, M., C. Mayer i M. Neitzel. "Continuous Manufacturing of Thermoplastic Composite Sheets". Engineering Plastics 4, nr 7 (styczeń 1996): 147823919600400. http://dx.doi.org/10.1177/147823919600400705.
Pełny tekst źródłaOstgathe, M., C. Mayer i M. Neitzel. "Continuous Manufacturing of Thermoplastic Composite Sheets". Polymers and Polymer Composites 4, nr 7 (październik 1996): 505–12. http://dx.doi.org/10.1177/096739119600400705.
Pełny tekst źródłade Miranda, L. F., L. H. Silveira, Leonardo Gondim Andrade e Silva i Antônio Hortêncio Munhoz Jr. "Irradiation of a Polypropilene-Glass Fiber Composite". Advances in Science and Technology 71 (październik 2010): 138–44. http://dx.doi.org/10.4028/www.scientific.net/ast.71.138.
Pełny tekst źródłaRozprawy doktorskie na temat "Thermoplastic composite armors reinforced"
Ekström, Lars Johan. "Welding of bistable fibre-reinforced thermoplastic composite pipelines". Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614933.
Pełny tekst źródłaWu, Xiang. "Thermoforming continuous fiber reinforced thermoplastic composites". Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/9383.
Pełny tekst źródłaHowes, Jeremy C. "Interfacial strength development in thermoplastic resins and fiber-reinforced thermoplastic composites". Thesis, Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/77899.
Pełny tekst źródłaMaster of Science
Leach, David W. "An experimental study of the processing parameters in thermoplastic filament winding". Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/16030.
Pełny tekst źródłaClaassen, Marius. "A reconfigurable manufacturing system for thermoplastic fibre-reinforced composite parts : a feasibility assessment". Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97045.
Pełny tekst źródłaENGLISH ABSTRACT: The South African manufacturing industry plays a pivotal role in the growth of its local economy. Modern manufacturing requirements include the ability to respond quickly to product variability, fluctuations in product demand and new process technologies. The reconfigurable manufacturing paradigm has been proposed to meet the demands of the new manufacturing requirements. In order to assess the feasibility of incorporating automated, reconfigurable manufacturing technologies into the production process of thermoplastic fibre-reinforced composite parts, a system, based on the thermoforming process, that implements these technologies was developed and evaluated. The assessment uses a seat pan for commercial aircraft as case study. Aspects that were addressed include the architecture, configuration and control of the system. The architecture and configuration addressed the sheet cutting, fixturing, reinforcing, heating, forming, quality assurance and transportation. The control, implemented using agents and based on the ADACOR holonic reference architecture, addresses the cell control requirements of the thermoforming process. An evaluation of the system’s reconfigurability and throughput is performed using KUKA Sim Pro. The evaluation of the system’s throughput is compared to the predicted throughput of the conventional technique for manufacturing thermoplastic fibre reinforced composite parts in a thermoforming process. The evaluation of the system’s performance show that the system designed in this thesis for the manufacture of a thermoplastic fibre-reinforced composite seat pan sports a significant advantage in terms of throughput rate, which demonstrates its technical feasibility. The evaluation of the system’s reconfigurability show that, through its ability to handle new hardware and product changes, it exhibits the reconfigurability characteristics of modularity, convertibility, integrability and scalability.
AFRIKAANSE OPSOMMING: Die Suid-Afrikaanse vervaardigingsbedryf speel 'n sentrale rol in die groei van die plaaslike ekonomie. Moderne vervaardiging vereistes sluit in die vermoë om vinnig te reageer op die produk veranderlikheid, skommelinge in die produk aanvraag en nuwe proses tegnologieë. Die herkonfigureerbare vervaardiging paradigma is voorgestel om te voldoen aan die nuwe produksie vereistes. Ten einde die uitvoerbaarheid van die integrasie van outomatiese, herkonfigureerbare vervaardiging-tegnologieë in die produksieproses van veselversterkte saamgestelde onderdele te evalueer, is 'n stelsel, gebaseer op die termo-vormingsproses, wat sulke tegnologieë implementeer, ontwikkel. Die assessering gebruik 'n sitplek pan vir kommersiële vliegtuie as gevallestudie. Aspekte wat aangespreek is sluit in die argitektuur, konfigurasie en beheer van die vervaardigingstelsel. Die argitektuur en konfigurasie spreek aan die sny, setmate, versterking, verwarming, vorm, gehalteversekering en vervoer van n veselversterkte saamgestelde sitplek pan in 'n termo-vormingsproses. Die beheer, geïmplementeer deur die gebruik van agente en gebaseer op die ADACOR holoniese verwysing argitektuur, spreek die selbeheervereistes van die termo-vormingsproses aan. 'n Evaluering van die stelsel se herkonfigureerbaarheid en deurvoer word gedoen met die behulp van KUKA Sim Pro. Die evaluering van die stelsel se deurvoer word vergelyk met die deurvoer van die konvensionele vervaardigingsproses vir termoplastiese vessel-versterkte saamgestelde onderdele in 'n termo-vormingsproses. Die evaluering van die stelsel se prestasie toon dat die stelsel wat in hierdie tesis ontwerp is vir die vervaardiging van 'n termoplastiese vessel-versterkte saamgestelde sitplek pan, hou 'n beduidende voordeel, in terme van deurvloeikoers, in wat die stelsel se tegniese haalbaarheid toon. Die evaluering van die stelsel se herkonfigureerbaarheid wys dat, deur middel van sy vermoë om nuwe hardeware en produk veranderinge te hanteer, die stelsel herkonfigureerbare einskappe van modulariteit, inwisselbaarheid, integreerbaarheid en skaalbaarheid vertoon.
Brunnacker, Lena. "Short Carbon Fiber-Reinforced Thermoplastic Composites for Jet Engine Components". Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76733.
Pełny tekst źródłaLUPONE, FEDERICO. "Additive manufacturing of carbon fiber reinforced thermoplastic polymer composites". Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2966347.
Pełny tekst źródłaGray, Robert Williamson IV. "The Effects of Processing Conditions on Thermoplastic Prototypes Reinforced with Thermotropic Liquid Crystalline Polymers". Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/46512.
Pełny tekst źródłaMaster of Science
Beguinel, Johanna. "Interfacial adhesion in continuous fiber reinforced thermoplastic composites : from micro-scale to macro-scale". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI051.
Pełny tekst źródłaThe present study was initiated by the development of a new processing route, i.e. latex-dip impregnation, for thermoplastic (TP) acrylic semi-finished materials. The composites resulting from thermocompression of TPREG I plies were studied by focusing of interfacial adhesion. Indeed the fiber/matrix interface governs the stress transfer from matrix to fibers. Thus, a multi-scale analysis of acrylic matrix/fiber interfaces was conducted by considering microcomposites, as models for fiber-based composites, and unidirectional (UD)macro-composites. The study displayed various types of sized glass and carbon fibers. On one hand, the correlation between thermodynamic adhesion and practical adhesion, resulting from micromechanical testing, is discussed by highlighting the role of the physico-chemistry of the created interphase. Wetting and thermodynamical adhesion are driven by the polarity of the film former of the sizing. On the other hand, in-plane shear modulus values from off-axis tensile test results on UD composites are consistent with the quantitative analyses of the interfacial shear strength obtained from microcomposites. More specifically, both tests have enabled a differentiation of interface properties based on the fiber sizing nature for glass and carbon fiber-reinforced (micro-)composites. The study of overall mechanical and interface properties of glass and carbon fiber/acrylic composites revealed the need for tailoring interfacial adhesion. Modifications of the matrix led to successful increases of interfacial adhesion in glass fiber/acrylic composites. An additional hygrothermal ageing study evidenced a significant loss of interfacial shear strength at micro-scale which was not observed for UD composites. The results of this study are a first step towards a database of relevant interface properties of structural TP composites. Finally, the analyses of interfaces/phases at different scales demonstrate the importance of a multi-scale approach to tailor the final properties of composite parts
Louwsma, Jeroen. "Synthesis and investigation of oligomers based on phenylalanine as interfacial agents in fibre-reinforced thermoplastic composite materials". Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAF047.
Pełny tekst źródłaThe development of interfacial agents for fibre-reinforced composite materials is needed to obtain performant materials especially for the automotive industry. The project focused on the synthesis of sequence-controlled oligomers prepared by solid phase synthesis using amidation and copper-assisted alkyne-azide cycloaddition reactions to introduce precisely phenylalanine and aliphatic building blocks. These oligomers were evaluated as potential interfacial agents for Kevlar fibre-reinforced polypropylene composite materials. Their ability to adsorb on the fibres was investigated qualitatively by scanning electron microscopy and quantitatively by gravimetric analysis. Some preliminary experiments on the Kevlar fibres treated with some of the synthesised oligomers in a polypropylene matrix were conducted to estimate their potential use in composite materials
Książki na temat "Thermoplastic composite armors reinforced"
C, Loos Alfred, i United States. National Aeronautics and Space Administration., red. Interfacial strength development in thermoplastic resins and fiber-reinforced thermoplastic composites. Blacksburg, Va: College of Engineering, Virginia Polytechnic and State University, 1987.
Znajdź pełny tekst źródłaH, Hou T., Tiwari S. N i United States. National Aeronautics and Space Administration., red. Analysis of pultrusion processing for long fiber reinforced thermoplastic composite system. Norfolk, Va: Old Dominion University, 1993.
Znajdź pełny tekst źródłaSchlechter, Melvin. Composites: Resins, fillers, reinforcements, natural fibers and nanocomposites. Norwalk, CT: Business Communications Co., 2002.
Znajdź pełny tekst źródłaAnalysis of pultrusion processing for long fiber reinforced thermoplastic composite system. Norfolk, Va: Old Dominion University, 1993.
Znajdź pełny tekst źródłaAn improved compression molding technology for continuous fiber reinforced composite laminate: Part 1: AS-4/LaRC-TPI 1500 (HFG) prepreg system. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.
Znajdź pełny tekst źródłaCzęści książek na temat "Thermoplastic composite armors reinforced"
Russo, Pietro, Giorgio Simeoli, Valentina Lopresto, Antonio Langella i Ilaria Papa. "Environmental Friendly Thermoplastic Composite Laminates Reinforced with Jute Fabric". W Advances in Natural Fibre Composites, 119–26. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64641-1_11.
Pełny tekst źródłaCervenka, A. "Composite Pipes Based on Thermoplastic Matrices Reinforced by Continuous Fibres". W Mechanics of Composite Materials and Structures, 309–18. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4489-6_18.
Pełny tekst źródłaGutiérrez, Tomy J., Romina Ollier i Vera A. Alvarez. "Surface Properties of Thermoplastic Starch Materials Reinforced with Natural Fillers". W Springer Series on Polymer and Composite Materials, 131–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66417-0_5.
Pełny tekst źródłaMartin, T. A., D. Bhattachryya i R. B. Pipes. "Computer-Aided Grid Strain Analysis in Fibre Reinforced Thermoplastic Sheet Forming". W Computer Aided Design in Composite Material Technology III, 143–62. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2874-2_10.
Pełny tekst źródłaAzaman, M. D., S. M. Sapuan, S. Sulaiman, E. S. Zainudin i A. Khalina. "Processability of Wood Fibre-Filled Thermoplastic Composite Thin-Walled Parts Using Injection Moulding". W Manufacturing of Natural Fibre Reinforced Polymer Composites, 351–67. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-07944-8_17.
Pełny tekst źródłaMitscherling, J., i W. Michaeli. "An Extended Model for the Forming Simulation of Fabric Reinforced Thermoplastic Prepregs". W Developments in the Science and Technology of Composite Materials, 113–18. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0787-4_13.
Pełny tekst źródłaLeterrier, Y., C. G’sell i A. Gerard. "Structural Evolution of a Stamping Reinforced Thermoplastic (SRT) in Both Extensional and Shearing Flows". W Developments in the Science and Technology of Composite Materials, 1067–72. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0787-4_154.
Pełny tekst źródłaKim, Jin Woo, i Dong Gi Lee. "Effect of Fiber Content and Fiber Orientation on the Tensile Strength in Glass Mat Reinforced Thermoplastic Sheet". W Advances in Composite Materials and Structures, 337–40. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.337.
Pełny tekst źródłaBrecher, C., M. Emonts, J. Stimpfl i A. Kermer-Meyer. "Production of Customized Hybrid Fiber-Reinforced Thermoplastic Composite Components Using Laser-Assisted Tape Placement". W Lecture Notes in Production Engineering, 123–29. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01964-2_17.
Pełny tekst źródłaBar, Mahadev, R. Alagirusamy i Apurba Das. "Advances in Natural Fibre Reinforced Thermoplastic Composite Manufacturing: Effect of Interface and Hybrid Yarn Structure on Composite Properties". W Advances in Natural Fibre Composites, 99–117. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64641-1_10.
Pełny tekst źródłaStreszczenia konferencji na temat "Thermoplastic composite armors reinforced"
Skeie, Geir, Nils Sødahl i Dag McGeorge. "Cross Section Analysis of Flexible Risers Including Composite Layers". W ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-81326.
Pełny tekst źródłaNino, Giovanni, Harald Bersee, Adriaan Beukers i Tahira Ahmed. "Erosion of Fiber Reinforced Thermoplastic Composite Structures". W 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
16th AIAA/ASME/AHS Adaptive Structures Conference
10t. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-1909.
Meyer, Didier, Paola Carnevale, Harald Bersee i Adriaan Beukers. "New Affordable Reinforced Thermoplastic Composite for Structural Aircraft Applications". W 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-2337.
Pełny tekst źródłaLiang, Jiaai, i Shankar Kalyanasundaram. "Failure behavior of a glass-fiber reinforced thermoplastic composite". W 2ND INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS AND MATERIAL ENGINEERING (ICCMME 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4983583.
Pełny tekst źródłaSelim, M., M. Moore, J. Lee i A. Green. "A Sustainable and Durable Glass Reinforced Thermoplastic Composite Railroad Crosstie". W CAMX 2019. NA SAMPE, 2019. http://dx.doi.org/10.33599/nasampe/c.19.0831.
Pełny tekst źródłaSaito, Takeshi, Ryo Morimoto, Masaru Imamura, Akio Ohtani i Asami Nakai. "Dimensional and Internal Structural Design for Braided Fabric Reinforced Thermoplastic Composite". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64416.
Pełny tekst źródłaSorrentino, L., L. Cafiero, M. D’Auria i S. Iannace. "Processing and properties of multiscale cellular thermoplastic fiber reinforced composite (CellFRC)". W THE SECOND ICRANET CÉSAR LATTES MEETING: Supernovae, Neutron Stars and Black Holes. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4937309.
Pełny tekst źródłaMaron, Bernhard, Christian Garthaus, Florian Lenz, Andreas Hornig, Michael Hübner i Maik Gude. "Forming of carbon fiber reinforced thermoplastic composite tubes - Experimental and numerical approaches". W ESAFORM 2016: Proceedings of the 19th International ESAFORM Conference on Material Forming. Author(s), 2016. http://dx.doi.org/10.1063/1.4963584.
Pełny tekst źródłaKuhtz, M., B. Maron, A. Hornig, M. Müller, A. Langkamp i M. Gude. "Characterising the thermoforming behaviour of glass fibre textile reinforced thermoplastic composite materials". W PROCEEDINGS OF THE 21ST INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5034815.
Pełny tekst źródłaMeyer, Didier, Harald Bersee i Adriaan Beukers. "Temperature Effect on Reinforced Thermoplastic Composite Properties for Primary Aircraft Structure Applications". W 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
16th AIAA/ASME/AHS Adaptive Structures Conference
10t. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-1938.
Raporty organizacyjne na temat "Thermoplastic composite armors reinforced"
Naus, Dan J., James Corum, Lynn B. Klett, Mike Davenport, Rick Battiste i Jr ,. William A. Simpson. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber-Reinforced Thermoplastic Automotive Composite. Office of Scientific and Technical Information (OSTI), kwiecień 2006. http://dx.doi.org/10.2172/930728.
Pełny tekst źródła(Archived), Irina Ward, i Farah Abu Saleh. PR-473-144506-R01 State of the Art Alternatives to Steel Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), grudzień 2017. http://dx.doi.org/10.55274/r0011459.
Pełny tekst źródła