Agrafonov, Yury V., i Ivan S. Petrushin. "Random First Order Transition from a Supercooled Liquid to an Ideal Glass (Review)". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, nr 3 (18.09.2020): 291–302. http://dx.doi.org/10.17308/kcmf.2020.22/2959.
Streszczenie:
The random first order transition theory (RFOT) describing the transition from a supercooled liquid to an ideal glass has been actively developed over the last twenty years. This theory is formulated in a way that allows a description of the transition from the initial equilibrium state to the final metastable state without considering any kinetic processes. The RFOT and its applications for real molecular systems (multicomponent liquids with various intermolecular potentials, gel systems, etc.) are widely represented in English-language sources. However, these studies are practically not described in any Russian sources. This paper presents an overview of the studies carried out in this field.
REFERENCES
1. Sanditov D. S., Ojovan M. I. Relaxation aspectsof the liquid—glass transition. Uspekhi FizicheskihNauk. 2019;189(2): 113–133. DOI: https://doi.org/10.3367/ufnr.2018.04.0383192. Tsydypov Sh. B., Parfenov A. N., Sanditov D. S.,Agrafonov Yu. V., Nesterov A. S. Application of themolecular dynamics method and the excited statemodel to the investigation of the glass transition inargon. Available at: http://www.isc.nw.ru/Rus/GPCJ/Content/2006/tsydypov_32_1.pdf (In Russ.). GlassPhysics and Chemistry. 2006;32(1): 83–88. DOI: https://doi.org/10.1134/S10876596060101113. Berthier L., Witten T. A. Glass transition of densefluids of hard and compressible spheres. PhysicalReview E. 2009;80(2): 021502. DOI: https://doi.org/10.1103/PhysRevE.80.0215024. Sarkisov G. N. Molecular distribution functionsof stable, metastable and amorphous classical models.Uspekhi Fizicheskih Nauk. 2002;172(6): 647–669. DOI:https://doi.org/10.3367/ufnr.0172.200206b.06475. Hoover W. G., Ross M., Johnson K. W., HendersonD., Barker J. A., Brown, B. C. Soft-sphere equationof state. The Journal of Chemical Physics, 1970;52(10):4931–4941. DOI: https://doi.org/10.1063/1.16727286. Cape J. N., Woodcock L. V. Glass transition in asoft-sphere model. The Journal of Chemical Physics,1980;72(2): 976–985. DOI: https://doi.org/10.1063/1.4392177. Franz S., Mezard M., Parisi G., Peliti L. Theresponse of glassy systems to random perturbations:A bridge between equilibrium and off-equilibrium.Journal of Statistical Physics. 1999;97(3–4): 459–488.DOI: https://doi.org/10.1023/A:10046029063328. Marc Mezard and Giorgio Parisi. Thermodynamicsof glasses: a first principles computation. J. of Phys.:Condens. Matter. 1999;11: A157–A165.9. Berthier L., Jacquin H., Zamponi F. Microscopictheory of the jamming transition of harmonic spheres.Physical Review E, 2011;84(5): 051103. DOI: https://doi.org/10.1103/PhysRevE.84.05110310. Berthier L., Biroli, G., Charbonneau P.,Corwin E. I., Franz S., Zamponi F. Gardner physics inamorphous solids and beyond. The Journal of ChemicalPhysics. 2019;151(1): 010901. DOI: https://doi.org/10.1063/1.5097175 11. Berthier L., Ozawa M., Scalliet C. Configurationalentropy of glass-forming liquids. The Journal ofChemical Physics. 2019;150(16): 160902. DOI: https://doi.org/10.1063/1.509196112. Bomont J. M., Pastore G. An alternative schemeto find glass state solutions using integral equationtheory for the pair structure. Molecular Physics.2015;113(17–18): 2770–2775. DOI: https://doi.org/10.1080/00268976.2015.103832513. Bomont J. M., Hansen J. P., Pastore G.Hypernetted-chain investigation of the random firstordertransition of a Lennard-Jones liquid to an idealglass. Physical Review E. 2015;92(4): 042316. DOI:https://doi.org/10.1103/PhysRevE.92.04231614. Bomont J. M., Pastore G., Hansen J. P.Coexistence of low and high overlap phases in asupercooled liquid: An integral equation investigation.The Journal of Chemical Physics. 2017;146(11): 114504.DOI: https://doi.org/10.1063/1.497849915. Bomont J. M., Hansen J. P., Pastore G. Revisitingthe replica theory of the liquid to ideal glass transition.The Journal of Chemical Physics. 2019;150(15): 154504.DOI: https://doi.org/10.1063/1.508881116. Cammarota C., Seoane B. First-principlescomputation of random-pinning glass transition, glasscooperative length scales, and numerical comparisons.Physical Review B. 2016;94(18): 180201. DOI: https://doi.org/10.1103/PhysRevB.94.18020117. Charbonneau P., Ikeda A., Parisi G., Zamponi F.Glass transition and random close packing above threedimensions. Physical Review Letters. 2011;107(18):185702. DOI: https://doi.org/10.1103/PhysRevLett.107.18570218. Ikeda A., Miyazaki K. Mode-coupling theory asa mean-field description of the glass transition.Physical Review Letters. 2010;104(25): 255704. DOI:https://doi.org/10.1103/PhysRevLett.104.25570419. McCowan D. Numerical study of long-timedynamics and ergodic-nonergodic transitions in densesimple fluids. Physical Review E. 2015;92(2): 022107.DOI: https://doi.org/10.1103/PhysRevE.92.02210720. Ohtsu H., Bennett T. D., Kojima T., Keen D. A.,Niwa Y., Kawano M. Amorphous–amorphous transitionin a porous coordination polymer. ChemicalCommunications. 2017;53(52): 7060–7063. DOI:https://doi.org/10.1039/C7CC03333H21. Schmid B., Schilling R. Glass transition of hardspheres in high dimensions. Physical Review E.2010;81(4): 041502. DOI: https://doi.org/10.1103/PhysRevE.81.04150222. Parisi G., Slanina, F. Toy model for the meanfieldtheory of hard-sphere liquids. Physical Review E.2000;62(5): 6554. DOI: https://doi.org/10.1103/Phys-RevE.62.655423. Parisi G., Zamponi F. The ideal glass transitionof hard spheres. The Journal of Chemical Physics.2005;123(14): 144501. DOI: https://doi.org/10.1063/1.204150724. Parisi G., Zamponi F. Amorphous packings ofhard spheres for large space dimension. Journal ofStatistical Mechanics: Theory and Experiment. 2006;03:P03017. DOI: https://doi.org/10.1088/1742-5468/2006/03/P0301725. Parisi G., Procaccia I., Shor C., Zylberg J. Effectiveforces in thermal amorphous solids with genericinteractions. Physical Review E. 2019;99(1): 011001. DOI:https://doi.org/10.1103/PhysRevE.99.01100126. Stevenson J. D., Wolynes P. G. Thermodynamic −kinetic correlations in supercooled liquids: a criticalsurvey of experimental data and predictions of therandom first-order transition theory of glasses. TheJournal of Physical Chemistry B. 2005;109(31): 15093–15097. DOI: https://doi.org/10.1021/jp052279h27. Xia X., Wolynes P. G. Fragilities of liquidspredicted from the random first order transition theoryof glasses. Proceedings of the National Academy ofSciences. 2000;97(7): 2990–2994. DOI: https://doi.org/10.1073/pnas.97.7.299028. Kobryn A. E., Gusarov S., Kovalenko A. A closurerelation to molecular theory of solvation formacromolecules. Journal of Physics: Condensed Matter.2016; 28 (40): 404003. DOI: https://doi.org/10.1088/0953-8984/28/40/40400329. Coluzzi B. , Parisi G. , Verrocchio P.Thermodynamical liquid-glass transition in a Lennard-Jones binary mixture. Physical Review Letters.2000;84(2): 306. DOI: https://doi.org/10.1103/PhysRevLett.84.30630. Sciortino F., Tartaglia P. Extension of thefluctuation-dissipation theorem to the physical agingof a model glass-forming liquid. Physical Review Letters.2001;86(1): 107. DOI: https://doi.org/10.1103/Phys-RevLett.86.10731. Sciortino, F. One liquid, two glasses. NatureMaterials. 2002;1(3): 145–146. DOI: https://doi.org/10.1038/nmat75232. Farr R. S., Groot R. D. Close packing density ofpolydisperse hard spheres. The Journal of ChemicalPhysics. 2009;131(24): 244104. DOI: https://doi.org/10.1063/1.327679933. Barrat J. L., Biben T., Bocquet, L. From Paris toLyon, and from simple to complex liquids: a view onJean-Pierre Hansen’s contribution. Molecular Physics.2015;113(17-18): 2378–2382. DOI: https://doi.org/10.1080/00268976.2015.103184334. Gaspard J. P. Structure of Melt and Liquid Alloys.In Handbook of Crystal Growth. Elsevier; 2015. 580 p.DOI: https://doi.org/10.1016/B978-0-444-56369-9.00009-535. Heyes D. M., Sigurgeirsson H. The Newtonianviscosity of concentrated stabilized dispersions:comparisons with the hard sphere fluid. Journal ofRheology. 2004;48(1): 223–248. DOI: https://doi.org/10.1122/1.163498636. Ninarello A., Berthier L., Coslovich D. Structureand dynamics of coupled viscous liquids. MolecularPhysics. 2015;113(17-18): 2707–2715. DOI: https://doi.org/10.1080/00268976.2015.103908937. Russel W. B., Wagner N. J., Mewis J. Divergencein the low shear viscosity for Brownian hard-spheredispersions: at random close packing or the glasstransition? Journal of Rheology. 2013;57(6): 1555–1567.DOI: https://doi.org/10.1122/1.482051538. Schaefer T. Fluid dynamics and viscosity instrongly correlated fluids. Annual Review of Nuclearand Particle Science. 2014;64: 125–148. DOI: https://doi.org/10.1146/annurev-nucl-102313-02543939. Matsuoka H. A macroscopic model thatconnects the molar excess entropy of a supercooledliquid near its glass transition temperature to itsviscosity. The Journal of Chemical Physics. 2012;137(20):204506. DOI: https://doi.org/10.1063/1.476734840. de Melo Marques F. A., Angelini R., Zaccarelli E.,Farago B., Ruta B., Ruocco, G., Ruzicka B. Structuraland microscopic relaxations in a colloidal glass. SoftMatter. 2015;11(3): 466–471. DOI: https://doi.org/10.1039/C4SM02010C41. Deutschländer S., Dillmann P., Maret G., KeimP. Kibble–Zurek mechanism in colloidal monolayers.Proceedings of the National Academy of Sciences.2015;112(22): 6925–6930. DOI: https://doi.org/10.1073/pnas.150076311242. Chang J., Lenhoff A. M., Sandler S. I.Determination of fluid–solid transitions in modelprotein solutions using the histogram reweightingmethod and expanded ensemble simulations. TheJournal of Chemical Physics. 2004;120(6): 3003–3014.DOI: https://doi.org/10.1063/1.163837743. Gurikov P., Smirnova I. Amorphization of drugsby adsorptive precipitation from supercriticalsolutions: a review. The Journal of Supercritical Fluids.2018;132: 105–125. DOI: https://doi.org/10.1016/j.supflu.2017.03.00544. Baghel S., Cathcart H., O’Reilly N. J. Polymericamorphoussolid dispersions: areviewofamorphization, crystallization, stabilization, solidstatecharacterization, and aqueous solubilization ofbiopharmaceutical classification system class II drugs.Journal of Pharmaceutical Sciences. 2016;105(9):2527–2544. DOI: https://doi.org/10.1016/j.xphs.2015.10.00845. Kalyuzhnyi Y. V., Hlushak S. P. Phase coexistencein polydisperse multi-Yukawa hard-sphere fluid: hightemperature approximation. The Journal of ChemicalPhysics. 2006;125(3): 034501. DOI: https://doi.org/10.1063/1.221241946. Mondal C., Sengupta S. Polymorphism,thermodynamic anomalies, and network formation inan atomistic model with two internal states. PhysicalReview E. 2011;84(5): 051503. DOI: https://doi.org/10.1103/PhysRevE.84.05150347. Bonn D., Denn M. M., Berthier L., Divoux T.,Manneville S. Yield stress materials in soft condensedmatter. Reviews of Modern Physics. 2017;89(3): 035005.DOI: https://doi.org/10.1103/RevModPhys.89.03500548. Tanaka H. Two-order-parameter model of theliquid–glass transition. I. Relation between glasstransition and crystallization. Journal of Non-Crystalline Solids. 2005;351(43-45): 3371–3384. DOI:https://doi.org/10.1016/j.jnoncrysol.2005.09.00849. Balesku R. Ravnovesnaya i neravnovesnayastatisticheskaya mekhanika [Equilibrium and nonequilibriumstatistical mechanics]. Moscow: Mir Publ.;1978. vol. 1. 404 c. (In Russ.)50. Chari S., Inguva R., Murthy K. P. N. A newtruncation scheme for BBGKY hierarchy: conservationof energy and time reversibility. arXiv preprintarXiv: 1608. 02338. DOI: https://arxiv.org/abs/1608.0233851. Gallagher I., Saint-Raymond L., Texier B. FromNewton to Boltzmann: hard spheres and short-rangepotentials. European Mathematical Society.arXiv:1208.5753. DOI: https://arxiv.org/abs/1208.575352. Rudzinski J. F., Noid W. G. A generalized-Yvon-Born-Green method for coarse-grained modeling. TheEuropean Physical Journal Special Topics. 224(12),2193–2216. DOI: https://doi.org/10.1140/epjst/e2015-02408-953. Franz B., Taylor-King J. P., Yates C., Erban R.Hard-sphere interactions in velocity-jump models.Physical Review E. 2016;94(1): 012129. DOI: https://doi.org/10.1103/PhysRevE.94.01212954. Gerasimenko V., Gapyak I. Low-Densityasymptotic behavior of observables of hard spherefluids. Advances in Mathematical Physics. 2018:6252919. DOI: https://doi.org/10.1155/2018/625291955. Lue L. Collision statistics, thermodynamics,and transport coefficients of hard hyperspheres inthree, four, and five dimensions. The Journal ofChemical Physics. 2005;122(4): 044513. DOI: https://doi.org/10.1063/1.183449856. Cigala G., Costa D., Bomont J. M., Caccamo C.Aggregate formation in a model fluid with microscopicpiecewise-continuous competing interactions.Molecular Physics. 2015;113(17–18): 2583–2592.DOI: https://doi.org/10.1080/00268976.2015.107800657. Jadrich R., Schweizer K. S. Equilibrium theoryof the hard sphere fluid and glasses in the metastableregime up to jamming. I. Thermodynamics. The Journalof Chemical Physics. 2013;139(5): 054501. DOI: https://doi.org/10.1063/1.481627558. Mondal A., Premkumar L., Das S. P. Dependenceof the configurational entropy on amorphousstructures of a hard-sphere fluid. Physical Review E.2017;96(1): 012124. DOI: https://doi.org/10.1103/PhysRevE.96.01212459. Sasai M. Energy landscape picture ofsupercooled liquids: application of a generalizedrandom energy model. The Journal of Chemical Physics.2003;118(23): 10651–10662. DOI: https://doi.org/10.1063/1.157478160. Sastry S. Liquid limits: Glass transition andliquid-gas spinodal boundaries of metastable liquids.Physical Review Letters. 2000;85(3): 590. DOI: https://doi.org/10.1103/PhysRevLett.85.59061. Uche O. U., Stillinger F. H., Torquato S. On therealizability of pair correlation functions. Physica A:Statistical Mechanics and its Applications. 2006;360(1):21–36. DOI: https://doi.org/10.1016/j.physa.2005.03.05862. Bi D., Henkes S., Daniels K. E., Chakraborty B.The statistical physics of athermal materials. Annu.Rev. Condens. Matter Phys. 2015;6(1): 63–83. DOI:https://doi.org/10.1146/annurev-conmatphys-031214-01433663. Bishop M., Masters A., Vlasov A. Y. Higher virialcoefficients of four and five dimensional hardhyperspheres. The Journal of Chemical Physics.2004;121(14): 6884–6886. DOI: https://doi.org/10.1063/1.177757464. Sliusarenko O. Y., Chechkin A. V., SlyusarenkoY. V. The Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy and Fokker-Planck equation for manybodydissipative randomly driven systems. Journal ofMathematical Physics. 2015;56(4): 043302. DOI:https://doi.org/10.1063/1.491861265. Tang Y. A new grand canonical ensemblemethod to calculate first-order phase transitions. TheJournal of chemical physics. 2011;134(22): 224508. DOI:https://doi.org/10.1063/1.359904866. Tsednee T., Luchko T. Closure for the Ornstein-Zernike equation with pressure and free energyconsistency. Physical Review E. 2019;99(3): 032130.DOI: https://doi.org/10.1103/PhysRevE.99.03213067. Maimbourg T., Kurchan J., Zamponi, F. Solutionof the dynamics of liquids in the large-dimensionallimit. Physical review letters. 2016;116(1): 015902. DOI:https://doi.org/10.1103/PhysRevLett.116.01590268. Mari, R., & Kurchan, J. Dynamical transition ofglasses: from exact to approximate. The Journal ofChemical Physics. 2011;135(12): 124504. DOI: https://doi.org/10.1063/1.362680269. Frisch H. L., Percus J. K. High dimensionalityas an organizing device for classical fluids. PhysicalReview E. 1999;60(3): 2942. DOI: https://doi.org/10.1103/PhysRevE.60.294270. Finken R., Schmidt M., Löwen H. Freezingtransition of hard hyperspheres. Physical Review E.2001;65(1): 016108. DOI: https://doi.org/10.1103/PhysRevE.65.01610871. Torquato S., Uche O. U., Stillinger F. H. Randomsequential addition of hard spheres in high Euclideandimensions. Physical Review E. 2006;74(6): 061308.DOI: https://doi.org/10.1103/PhysRevE.74.06130872. Martynov G. A. Fundamental theory of liquids;method of distribution functions. Bristol: Adam Hilger;1992, 470 p.73. Vompe A. G., Martynov G. A. The self-consistentstatistical theory of condensation. The Journal ofChemical Physics. 1997;106(14): 6095–6101. DOI:https://doi.org/10.1063/1.47327274. Krokston K. Fizika zhidkogo sostoyaniya.Statisticheskoe vvedenie [Physics of the liquid state.Statistical introduction]. Moscow: Mir Publ.; 1978.400 p. (In Russ.)75. Rogers F. J., Young D. A. New, thermodynamicallyconsistent, integral equation for simple fluids. PhysicalReview A. 1984;30(2): 999. DOI: https://doi.org/10.1103/PhysRevA.30.99976. Wertheim M. S. Exact solution of the Percus–Yevick integral equation for hard spheres Phys. Rev.Letters. 1963;10(8): 321–323. DOI: https://doi.org/10.1103/PhysRevLett.10.32177. Tikhonov D. A., Kiselyov O. E., Martynov G. A.,Sarkisov G. N. Singlet integral equation in thestatistical theory of surface phenomena in liquids. J.of Mol. Liquids. 1999;82(1–2): 3– 17. DOI: https://doi.org/10.1016/S0167-7322(99)00037-978. Agrafonov Yu., Petrushin I. Two-particledistribution function of a non-ideal molecular systemnear a hard surface. Physics Procedia. 2015;71. 364–368. DOI: https://doi.org/10.1016/j.phpro.2015.08.35379. Agrafonov Yu., Petrushin I. Close order in themolecular system near hard surface. Journal of Physics:Conference Series. 2016;747: 012024. DOI: https://doi.org/10.1088/1742-6596/747/1/01202480. He Y., Rice S. A., Xu X. Analytic solution of theOrnstein-Zernike relation for inhomogeneous liquids.The Journal of Chemical Physics. 2016;145(23): 234508.DOI: https://doi.org/10.1063/1.497202081. Agrafonov Y. V., Petrushin I. S. Usingmolecular distribution functions to calculate thestructural properties of amorphous solids. Bulletinof the Russian Academy of Sciences: Physics. 2020;84:783–787. DOI: https://doi.org/10.3103/S106287382007003582. Bertheir L., Ediger M. D. How to “measure” astructural relaxation time that is too long to bemeasured? arXiv:2005.06520v1. DOI: https://arxiv.org/abs/2005.0652083. Karmakar S., Dasgupta C., Sastry S. Lengthscales in glass-forming liquids and related systems: areview. Reports on Progress in Physics. 2015;79(1):016601. DOI: https://doi.org/10.1088/0034-4885/79/1/01660184. De Michele C., Sciortino F., Coniglio A. Scalingin soft spheres: fragility invariance on the repulsivepotential softness. Journal of Physics: CondensedMatter. 2004;16(45): L489. DOI: https://doi.org/10.1088/0953-8984/16/45/L0185. Niblett S. P., de Souza V. K., Jack R. L., Wales D. J.Effects of random pinning on the potential energylandscape of a supercooled liquid. The Journal ofChemical Physics. 2018;149(11): 114503. DOI: https://doi.org/10.1063/1.504214086. Wolynes P. G., Lubchenko V. Structural glassesand supercooled liquids: Theory, experiment, andapplications. New York: John Wiley & Sons; 2012. 404p. DOI: https://doi.org/10.1002/978111820247087. Jack R. L., Garrahan J. P. Phase transition forquenched coupled replicas in a plaquette spin modelof glasses. Physical Review Letters. 2016;116(5): 055702.DOI: https://doi.org/10.1103/PhysRevLett.116.05570288. Habasaki J., Ueda A. Molecular dynamics studyof one-component soft-core system: thermodynamicproperties in the supercooled liquid and glassy states.The Journal of Chemical Physics. 2013;138(14): 144503.DOI: https://doi.org/10.1063/1.479988089. Bomont J. M., Hansen J. P., Pastore G. Aninvestigation of the liquid to glass transition usingintegral equations for the pair structure of coupledreplicae. J. Chem. Phys. 2014;141(17): 174505. DOI:https://doi.org/10.1063/1.490077490. Parisi G., Urbani P., Zamponi F. Theory of SimpleGlasses: Exact Solutions in Infinite Dimensions.Cambridge: Cambridge University Press; 2020. 324 p.DOI: https://doi.org/10.1017/978110812049491. Robles M., López de Haro M., Santos A., BravoYuste S. Is there a glass transition for dense hardspheresystems? The Journal of Chemical Physics.1998;108(3): 1290–1291. DOI: https://doi.org/10.1063/1.47549992. Grigera T. S., Martín-Mayor V., Parisi G.,Verrocchio P. Asymptotic aging in structural glasses.Physical Review B, 2004;70(1): 014202. DOI: https://doi.org/10.1103/PhysRevB.70.01420293. Vega C., Abascal J. L., McBride C., Bresme F.The fluid–solid equilibrium for a charged hard spheremodel revisited. The Journal of Chemical Physics.2003; 119 (2): 964–971. DOI: https://doi.org/10.1063/1.157637494. Kaneyoshi T. Surface amorphization in atransverse Ising nanowire; effects of a transverse field.Physica B: Condensed Matter. 2017;513: 87–94. DOI:https://doi.org/10.1016/j.physb.2017.03.01595. Paganini I. E., Davidchack R. L., Laird B. B.,Urrutia I. Properties of the hard-sphere fluid at a planarwall using virial series and molecular-dynamicssimulation. The Journal of Chemical Physics. 2018;149(1):014704. DOI: https://doi.org/10.1063/1.502533296. Properzi L., Santoro M., Minicucci M., Iesari F.,Ciambezi M., Nataf L., Di Cicco A. Structural evolutionmechanisms of amorphous and liquid As2 Se3 at highpressures. Physical Review B. 2016;93(21): 214205. DOI:https://doi.org/10.1103/PhysRevB.93.21420597. Sesé L. M. Computational study of the meltingfreezingtransition in the quantum hard-sphere systemfor intermediate densities. I. Thermodynamic results.The Journal of Chemical Physics. 2007;126(16): 164508.DOI: https://doi.org/10.1063/1.271852398. Shetty R., Escobedo F. A. On the application ofvirtual Gibbs ensembles to the direct simulation offluid–fluid and solid–fluid phase coexistence. TheJournal of Chemical Physics. 2002;116(18): 7957–7966.DOI: https://doi.org/10.1063/1.1467899