Artykuły w czasopismach na temat „Thermal time”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Thermal time.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Thermal time”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Skach, Matt, Manish Arora, Chang-Hong Hsu, Qi Li, Dean Tullsen, Lingjia Tang i Jason Mars. "Thermal time shifting". ACM SIGARCH Computer Architecture News 43, nr 3S (4.01.2016): 439–49. http://dx.doi.org/10.1145/2872887.2749474.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Shimokusu, Trevor J., Qing Zhu, Natan Rivera i Geoff Wehmeyer. "Time-periodic thermal rectification in heterojunction thermal diodes". International Journal of Heat and Mass Transfer 182 (styczeń 2022): 122035. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.122035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Arora, D., M. Skliar i R. B. Roemer. "Minimum-Time Thermal Dose Control of Thermal Therapies". IEEE Transactions on Biomedical Engineering 52, nr 2 (luty 2005): 191–200. http://dx.doi.org/10.1109/tbme.2004.840471.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

del Monte, J. P., P. L. Aguado i A. M. Tarquis. "Thermal time model ofSolanum sarrachoidesgermination". Seed Science Research 24, nr 4 (16.09.2014): 321–30. http://dx.doi.org/10.1017/s0960258514000221.

Pełny tekst źródła
Streszczenie:
AbstractA population-based modelling approach was used to predict the occurrence of germination inSolanum sarrachoides(SOLSA) for different treatments. Seeds collected in Toledo (Spain) were exposed to constant temperatures, to temperatures alternating between 10 and 30°C and to gibberellins (GAs; 0, 50, 100, 150 and 1000 ppm) during a 24-h imbibition period. The following parameters were measured: base temperature (Tb), mean thermal time (θT(50)) and the standard deviation of thermal time (σθT). The SOLSA seeds only germinated at constant temperatures when the highest GA concentration was applied. The thermal model suggests that the induction and loss of physiological dormancy following seed dispersal is achieved when temperatures vary and when a mean thermal time of 66 growing degree-days (d°C) and aTbvalue of 16°C are achieved when no GA treatment was added. The concentration of GA applied under conditions of alternating temperatures has an additive effect, reducing θT(50) up to threefold, from basal level (66 d°C) to 19.40 d°C, when the 1000 ppm GA treatment was applied. In this last case, the germination was accelerated by reducingTbto 14°C. A 5–10°C change in temperature and a range of average temperatures of 20–27.5°C promoted the germination of SOLSA seeds to the greatest extent in the absence of GA. However, these conditions are not frequently encountered in the irrigated areas of the studied region; this finding could explain the limited ability of SOLSA to expand its range within this area.
Style APA, Harvard, Vancouver, ISO itp.
5

Esman, R. D., i D. L. Rode. "Semiconductor‐laser thermal time constant". Journal of Applied Physics 59, nr 2 (15.01.1986): 407–9. http://dx.doi.org/10.1063/1.336644.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

TRUDGILL, D. L., A. HONEK, D. LI i N. M. STRAALEN. "Thermal time - concepts and utility". Annals of Applied Biology 146, nr 1 (styczeń 2005): 1–14. http://dx.doi.org/10.1111/j.1744-7348.2005.04088.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Hüttner, Bernd. "Is thermal conductivity time-dependent?" physica status solidi (b) 245, nr 12 (grudzień 2008): 2786–90. http://dx.doi.org/10.1002/pssb.200844182.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Borghi, Claudio. "Physical Time and Thermal Clocks". Foundations of Physics 46, nr 10 (6.07.2016): 1374–79. http://dx.doi.org/10.1007/s10701-016-0030-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Marshalov, Е. D., A. N. Nikonorov i I. K. Muravyov. "Determination of thermal response time of thermal resistance transducers". Vestnik IGEU, nr 3 (2017): 54–59. http://dx.doi.org/10.17588/2072-2672.2017.3.054-059.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Khafizov, Marat, i David H. Hurley. "Measurement of thermal transport using time-resolved thermal wave microscopy". Journal of Applied Physics 110, nr 8 (15.10.2011): 083525. http://dx.doi.org/10.1063/1.3653829.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Boglietti, Aldo, Enrico Carpaneto, Marco Cossale i Silvio Vaschetto. "Stator-Winding Thermal Models for Short-Time Thermal Transients: Definition and Validation". IEEE Transactions on Industrial Electronics 63, nr 5 (maj 2016): 2713–21. http://dx.doi.org/10.1109/tie.2015.2511170.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Jaljal, N., J. F. Trigeol i P. Lagonotte. "Reduced Thermal Model of an Induction Machine for Real-Time Thermal Monitoring". IEEE Transactions on Industrial Electronics 55, nr 10 (październik 2008): 3535–42. http://dx.doi.org/10.1109/tie.2008.2003196.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Desirena-López, G., A. Ramírez-Treviño, J. L. Briz, C. R. Vázquez i D. Gómez-Gutiérrez. "Thermal-aware Real-time Scheduling Using Timed Continuous Petri Nets". ACM Transactions on Embedded Computing Systems 18, nr 4 (12.08.2019): 1–24. http://dx.doi.org/10.1145/3322643.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Somogyvári, Márk, Peter Bayer i Ralf Brauchler. "Travel-time-based thermal tracer tomography". Hydrology and Earth System Sciences 20, nr 5 (12.05.2016): 1885–901. http://dx.doi.org/10.5194/hess-20-1885-2016.

Pełny tekst źródła
Streszczenie:
Abstract. Active thermal tracer testing is a technique to get information about the flow and transport properties of an aquifer. In this paper we propose an innovative methodology using active thermal tracers in a tomographic setup to reconstruct cross-well hydraulic conductivity profiles. This is facilitated by assuming that the propagation of the injected thermal tracer is mainly controlled by advection. To reduce the effects of density and viscosity changes and thermal diffusion, early-time diagnostics are used and specific travel times of the tracer breakthrough curves are extracted. These travel times are inverted with an eikonal solver using the staggered grid method to reduce constraints from the pre-defined grid geometry and to improve the resolution. Finally, non-reliable pixels are removed from the derived hydraulic conductivity tomograms. The method is applied to successfully reconstruct cross-well profiles as well as a 3-D block of a high-resolution fluvio-aeolian aquifer analog data set. Sensitivity analysis reveals a negligible role of the injection temperature, but more attention has to be drawn to other technical parameters such as the injection rate. This is investigated in more detail through model-based testing using diverse hydraulic and thermal conditions in order to delineate the feasible range of applications for the new tomographic approach.
Style APA, Harvard, Vancouver, ISO itp.
15

Grimmer, Daniel, Robert B. Mann i Eduardo Martín-Martínez. "Thermal contact: mischief and time scales". Journal of Physics A: Mathematical and Theoretical 52, nr 39 (3.09.2019): 395305. http://dx.doi.org/10.1088/1751-8121/ab3a19.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Daly, Steven F. "Thermal Ice Growth: Real-Time Estimation". Journal of Cold Regions Engineering 12, nr 1 (marzec 1998): 11–28. http://dx.doi.org/10.1061/(asce)0887-381x(1998)12:1(11).

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Sosna, C., T. Walter i W. Lang. "Response time of thermal flow sensors". Procedia Engineering 5 (2010): 524–27. http://dx.doi.org/10.1016/j.proeng.2010.09.162.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Sieniutycz, Stanislaw, i Michael R. von Spakovsky. "Finite time generalization of thermal exergy". Energy Conversion and Management 39, nr 14 (wrzesień 1998): 1423–47. http://dx.doi.org/10.1016/s0196-8904(98)00023-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Ahn, Youngwoo, i Riccardo Bettati. "Thermal effects on real-time systems". ACM SIGBED Review 5, nr 1 (styczeń 2008): 1–2. http://dx.doi.org/10.1145/1366283.1366312.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Trevisan, Marı́a Cristina, i Miguel H. Ibáñez S. "Nonlinear time evolution of thermal structures". Physics of Plasmas 7, nr 3 (marzec 2000): 897–905. http://dx.doi.org/10.1063/1.873887.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Kowalski, Kenneth L. "Real-time fermion thermal field theories". Physical Review D 35, nr 8 (15.04.1987): 2415–22. http://dx.doi.org/10.1103/physrevd.35.2415.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

van Gemert, Martin J. C., i A. J. Welch. "Time constants in thermal laser medicine". Lasers in Surgery and Medicine 9, nr 4 (1989): 405–21. http://dx.doi.org/10.1002/lsm.1900090414.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Gemert, Martin J. C. van, Gerald W. Lucassen i A. J. Welch. "Time constants in thermal laser medicine: II. Distributions of time constants and thermal relaxation of tissue". Physics in Medicine and Biology 41, nr 8 (1.08.1996): 1381–99. http://dx.doi.org/10.1088/0031-9155/41/8/009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Fartash, Amir Hossein, i Esmaeil Poursaeidi. "Thermal analysis of thermal barrier coating systems under transient and time harmonic thermal loads". Applied Thermal Engineering 208 (maj 2022): 118225. http://dx.doi.org/10.1016/j.applthermaleng.2022.118225.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Li, Min, Mingzhong Li, Zhenguo Wang, Xiongwei Yan, Jiangang Zheng, Xinying Jiang i Xiaomin Zhang. "Theoretical modeling and experimental investigations of the effective thermal equilibrium time for Yb:YAG crystal". Chinese Optics Letters 13, Suppl. (2015): S21412. http://dx.doi.org/10.3788/col201513.s21412.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Nazarov, K. M. "STUDY OF WATER INFILTRATION INTO CEMENT-BASED MORTARS USING REAL-TIME THERMAL NEUTRON RADIOGRAPHY". Eurasian Physical Technical Journal 17, nr 1 (czerwiec 2020): 39–45. http://dx.doi.org/10.31489/2020no1/39-45.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Evans, T. S. "New time contour for equilibrium real-time thermal field theories". Physical Review D 47, nr 10 (15.05.1993): R4196—R4198. http://dx.doi.org/10.1103/physrevd.47.r4196.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Gombos, Béla, i Ibolya Simon-Kiss. "Bilinear thermal time models for predicting flowering time of rice". Cereal Research Communications 33, nr 2-3 (czerwiec 2005): 569–76. http://dx.doi.org/10.1556/crc.33.2005.2-3.121.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Hlaváč, P., M. Božiková, Z. Hlaváčová i K. Kardjilova. "Changes in selected wine physical properties during the short-time storage". Research in Agricultural Engineering 62, No. 3 (30.08.2016): 147–53. http://dx.doi.org/10.17221/7/2015-rae.

Pełny tekst źródła
Streszczenie:
This article is focused on the effect of temperature and short-term storage on the physical properties of wine made in Slovakia. All measurements were performed during temperature manipulation in the temperature interval approximately from 0°C to 30°C. Two series of rheologic and thermal parameters measurements and one of electric parameter were done. First measurement was done at the beginning of storage and then the same sample was measured after a short storage. Temperature relations of rheologic parameters and electric conductivity were characterized by exponential functions, which is in good agreement with the Arrhenius equation. In case of thermal parameters linear relations were obtained. The graphical dependency of wine density on temperature was described by decreasing polynomial function. The temperature dependencies of dynamic and kinematic viscosity have a decreasing character. The fluidity, thermal conductivity, thermal diffusivity, and electrical conductivity increased with the temperature. It was found out that short-term storage had a small effect on measured properties but longer storage could have a more significant influence on selected properties.
Style APA, Harvard, Vancouver, ISO itp.
30

Bartz, Alex Cristiano, Martina Muttoni, Cleber Maus Alberto, Nereu Augusto Streck, Geter Alves Machado, Robson Giacomeli, Diogo Balbé Helgueira i Diogo da Silva Moura. "Thermal time in sprinkler-irrigated lowland rice". Pesquisa Agropecuária Brasileira 52, nr 7 (lipiec 2017): 475–84. http://dx.doi.org/10.1590/s0100-204x2017000700001.

Pełny tekst źródła
Streszczenie:
Abstract: The objective of this work was to evaluate methods of thermal time calculation and the duration of the development stages of lowland rice (Oryza sativa) irrigated by sprinkling. The experiment was conducted during three growing seasons (2010/2011, 2011/2012, and 2014/2015), with five irrigation water depths, six cultivars, and four replicates. Six methods of thermal time calculation were tested: two using the minimum basal temperature; two using the minimum and optimum temperatures; and two using the minimum, optimum, and maximum basal temperatures. For the thermal time calculation, the crop development cycle was divided into the vegetative, reproductive, and grain-filling phases. The methods that used the three cardinal temperatures showed the lowest coefficients of variation for most of the developmental phases. Both irrigation water depths and rice cultivars affected the thermal time of the development stages. The greater the water availability, the lower the duration of the development cycle. Thermal time values depend on the calculation method.
Style APA, Harvard, Vancouver, ISO itp.
31

Kim, Yong Seok, Dong Keun Lee, Jeong Min Lee, Hyun Woo Song, Sung Hyuk Kim, Jae Mean Koo, Chang Sung Seok i Myoung Rae Cho. "A Study on Thermal Fatigue Life Variation According to Thermal Exposure Time". Applied Mechanics and Materials 598 (lipiec 2014): 276–80. http://dx.doi.org/10.4028/www.scientific.net/amm.598.276.

Pełny tekst źródła
Streszczenie:
Thermal barrier coating. Thermal fatigue. Exposure time. Thermal fatigue test is one of the most widely used method to evaluate the durability of thermal barrier coating (TBC). However, thermal fatigue test can be concluded in totally different results according to the test variations. Especially, Exposure time of thermal fatigue test can affect the delamination life cycle of TBC. In this study, using the same test equipment which Kim et al. used, thermal fatigue tests were performed with different holding time at high temperature, and the test results by Kim et al. and those by this study were compared. In addition, delamination map was come to perfection from the test results to define more accurate thermal fatigue life.
Style APA, Harvard, Vancouver, ISO itp.
32

Martinetti, Pierre. "Emergence of Time in Quantum Gravity: Is Time Necessarily Flowing?" Kronoscope 13, nr 1 (2013): 67–84. http://dx.doi.org/10.1163/15685241-12341259.

Pełny tekst źródła
Streszczenie:
Abstract We discuss the emergence of time in quantum gravity and ask whether time is always “something that flows.” We first recall that this is indeed the case in both relativity and quantum mechanics, although in very different manners: time flows geometrically in relativity (i.e., as a flow of proper time in the four dimensional space-time), time flows abstractly in quantum mechanics (i.e., as a flow in the space of observables of the system). We then ask the same question in quantum gravity in the light of the thermal time hypothesis of Connes and Rovelli. The latter proposes to answer the question of time in quantum gravity (or at least one of its many aspects) by postulating that time is a state-dependent notion. This means that one is able to make a notion of time as an abstract flow—that we call the thermal time—emerge from the knowledge of both: the algebra of observables of the physical system under investigation; a state of thermal equilibrium of this system. Formally, the thermal time is similar to the abstract flow of time in quantum mechanics, but we show in various examples that it may have a concrete implementation either as a geometrical flow or as a geometrical flow combined with a non-geometric action. This indicates that in quantum gravity, time may well still be “something that flows” at some abstract algebraic level, but this does not necessarily imply that time is always and only “something that flows” at the geometric level.
Style APA, Harvard, Vancouver, ISO itp.
33

Aryasova, O., i Ya Khazan. "Characteristic time of thermal and diffusional relaxation". Geofizicheskiy Zhurnal 37, nr 6 (29.09.2017): 99–104. http://dx.doi.org/10.24028/gzh.0203-3100.v37i6.2015.111174.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Cahill, David G. "Thermal-conductivity measurement by time-domain thermoreflectance". MRS Bulletin 43, nr 10 (październik 2018): 782–89. http://dx.doi.org/10.1557/mrs.2018.209.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Hurley, David H., Subhash L. Shinde i Vitalyi E. Gusev. "Lateral Looking Time-Resolved Thermal Wave Microscopy". Journal of the Korean Physical Society 57, nr 2(1) (13.08.2010): 384–88. http://dx.doi.org/10.3938/jkps.57.384.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

SAKURAI, Yasumasa, Hideki IWAI, Yuji SASAKI i Minoru HIRANO. "Development of Real-time Thermal Displacement Compensation". Proceedings of The Manufacturing & Machine Tool Conference 2016.11 (2016): C28. http://dx.doi.org/10.1299/jsmemmt.2016.11.c28.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Arbel, Abir, i Menachem Natan. "Effective diffusion time during rapid thermal processing". Journal of Applied Physics 61, nr 3 (luty 1987): 1209–10. http://dx.doi.org/10.1063/1.338169.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Jeng, M. "Limits on finite-time thermal heating efficiencies". European Journal of Physics 25, nr 3 (31.03.2004): 453–61. http://dx.doi.org/10.1088/0143-0807/25/3/013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Thompson, Stephen C. "Modeling thermal effects in the time domain". Journal of the Acoustical Society of America 144, nr 3 (wrzesień 2018): 1713. http://dx.doi.org/10.1121/1.5067601.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Lanco, L., S. Ducci, J. P. Likforman, P. Filloux, X. Marcadet, M. Calligaro, G. Leo i V. Berger. "Time-resolved thermal characterization of semiconductor lasers". Applied Physics Letters 90, nr 2 (8.01.2007): 021105. http://dx.doi.org/10.1063/1.2430776.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Bak, Dongsu, Michael Gutperle i Andreas Karch. "Time dependent black holes and thermal equilibration". Journal of High Energy Physics 2007, nr 12 (10.12.2007): 034. http://dx.doi.org/10.1088/1126-6708/2007/12/034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Medrano Sandonas, Leonardo, Alexander Croy, Rafael Gutierrez i Gianaurelio Cuniberti. "Atomistic Framework for Time-Dependent Thermal Transport". Journal of Physical Chemistry C 122, nr 36 (16.08.2018): 21062–68. http://dx.doi.org/10.1021/acs.jpcc.8b06598.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Albuquerque, T. A. S., P. R. B. Pedreira, A. N. Medina, J. R. D. Pereira, A. C. Bento i M. L. Baesso. "Time resolved thermal lens in edible oils". Review of Scientific Instruments 74, nr 1 (styczeń 2003): 694–96. http://dx.doi.org/10.1063/1.1512776.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Maes, J., A. Moncorgé i H. Tchelepi. "Thermal adaptive implicit method: Time step selection". Journal of Petroleum Science and Engineering 106 (czerwiec 2013): 34–45. http://dx.doi.org/10.1016/j.petrol.2013.03.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Cai, Zi, Yizhen Huang i W. Vincent Liu. "Imaginary Time Crystal of Thermal Quantum Matter". Chinese Physics Letters 37, nr 5 (maj 2020): 050503. http://dx.doi.org/10.1088/0256-307x/37/5/050503.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Zhang, Anwei. "Thermal Casimir effect in Kerr space–time". Nuclear Physics B 898 (wrzesień 2015): 220–28. http://dx.doi.org/10.1016/j.nuclphysb.2015.07.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Postnov, K. A., S. I. Blinnikov, D. I. Kosenko i E. I. Sorokina. "Time-dependent thermal effects in GRB afterglows". Nuclear Physics B - Proceedings Supplements 132 (czerwiec 2004): 327–30. http://dx.doi.org/10.1016/j.nuclphysbps.2004.04.059.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Tang, J., J. N. Ikediala, S. Wang, J. D. Hansen i R. P. Cavalieri. "High-temperature-short-time thermal quarantine methods". Postharvest Biology and Technology 21, nr 1 (grudzień 2000): 129–45. http://dx.doi.org/10.1016/s0925-5214(00)00171-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Hong, Kan, i Sheng Hong. "Real-time stress assessment using thermal imaging". Visual Computer 32, nr 11 (26.10.2015): 1369–77. http://dx.doi.org/10.1007/s00371-015-1164-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Romano, V., A. D. Zweig, M. Frenz i H. P. Weber. "Time-resolved thermal microscopy with fluorescent films". Applied Physics B Photophysics and Laser Chemistry 49, nr 6 (grudzień 1989): 527–33. http://dx.doi.org/10.1007/bf00324952.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii