Gotowa bibliografia na temat „Thermal properties of porous foam”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Thermal properties of porous foam”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Thermal properties of porous foam"
Wang, Bin, Bugao Xu i Hejun Li. "Fabrication and properties of carbon/carbon-carbon foam composites". Textile Research Journal 89, nr 21-22 (13.03.2019): 4452–60. http://dx.doi.org/10.1177/0040517519836942.
Pełny tekst źródłaKishimoto, Akira, Takahiro Nakagawa, Takashi Teranishi i Hidetaka Hayashi. "Superplastically Foaming Method for Reliable Porous Ceramics". Materials Science Forum 735 (grudzień 2012): 109–12. http://dx.doi.org/10.4028/www.scientific.net/msf.735.109.
Pełny tekst źródłaAhn, Jae Hyeok, Jeong Hyeon Kim, Jeong Dae Kim, Seul Kee Kim, Kang Hyun Park, Sung Kyun Park i Jae Myung Lee. "Enhancement of Mechanical and Thermal Characteristics of Polyurethane-Based Composite with Silica Aerogel". Materials Science Forum 951 (kwiecień 2019): 63–67. http://dx.doi.org/10.4028/www.scientific.net/msf.951.63.
Pełny tekst źródłaLin, Ya Mei, Cui Wei Li, Feng Kun Yang i Chang An Wang. "Fabrication and Properties of Porous Anorthite⁄Mullite Ceramics". Key Engineering Materials 512-515 (czerwiec 2012): 590–95. http://dx.doi.org/10.4028/www.scientific.net/kem.512-515.590.
Pełny tekst źródłaDeptulski, Rafael, Gisele Vieira i Rachid Bennacer. "Active wall through a porous media foam type: flow and transfer characterization". MATEC Web of Conferences 330 (2020): 01052. http://dx.doi.org/10.1051/matecconf/202033001052.
Pełny tekst źródłaMashkin, Nikolay, Ekaterina Bartenjeva i Rustam Mansurov. "Naturally cured foamed concrete with improved thermal insulation properties". MATEC Web of Conferences 143 (2018): 02005. http://dx.doi.org/10.1051/matecconf/201814302005.
Pełny tekst źródłaMohd Razali, Razmi Noh, Bulan Abdullah, Muhammad Hussain Ismail i Norhamidi Muhamad. "Characteristic of Modified Geometrical Open-Cell Aluminum Foam by Casting Replication Process". Materials Science Forum 846 (marzec 2016): 37–41. http://dx.doi.org/10.4028/www.scientific.net/msf.846.37.
Pełny tekst źródłaBarteneva, Ekaterina A., Mikhail A. Ylesin, Nikolay A. Mashin i Dmitry V. Dubrov. "Improvement of Heat-Insulating Properties of Foam Concrete by Means of Mineral Additives". Key Engineering Materials 771 (czerwiec 2018): 31–36. http://dx.doi.org/10.4028/www.scientific.net/kem.771.31.
Pełny tekst źródłaAdamek, Grzegorz, Mikolaj Kozlowski, Mieczyslawa Jurczyk, Przemyslaw Wirstlein, Jakub Zurawski i Jaroslaw Jakubowicz. "Formation and Properties of Biomedical Ti-Ta Foams Prepared from Nanoprecursors by Thermal Dealloying Process". Materials 12, nr 17 (22.08.2019): 2668. http://dx.doi.org/10.3390/ma12172668.
Pełny tekst źródłaKim, B., P. Nun-anan, K. Hancharoen, K. Seiichi i K. Boonkerd. "Effect of Type and Content of Blowing Agent on Properties of NR/EPDM/EVA Foam". Journal of Physics: Conference Series 2175, nr 1 (1.01.2022): 012018. http://dx.doi.org/10.1088/1742-6596/2175/1/012018.
Pełny tekst źródłaRozprawy doktorskie na temat "Thermal properties of porous foam"
Anghelescu, Mihnea S. "Thermal and Mechanical Analysis of Carbon Foam". View abstract, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3353337.
Pełny tekst źródłaPiquemal, Philippe. "Élaboration d'un nouveau matériau isolant phonique et thermique en verre expansé et mise au point d'un procédé utilisant un chauffage diélectrique". Nancy 1, 1988. http://www.theses.fr/1988NAN10203.
Pełny tekst źródłaVijay, Dig. "Forced convective heat transfer through open cell foams". Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2017. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-226330.
Pełny tekst źródłaRodeheaver, Bret Alan. "Open-celled microcellular themoplastic foam". Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/18914.
Pełny tekst źródłaGeiger, Derek M. "AN EXPERIMENT ON INTEGRATED THERMAL MANAGEMENT USING METALLIC FOAM". DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/75.
Pełny tekst źródłaMahasaranon, Sararat. "Acoustic and thermal properties of recycled porous media". Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5516.
Pełny tekst źródłaMueller, Jennifer Elizabeth. "Determining the Role of Porosity on the Thermal Properties of Graphite Foam". Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/34110.
Pełny tekst źródłaMaster of Science
Bai, Chengying. "Highly porous geopolymer components". Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3427257.
Pełny tekst źródłaI geopolimeri, polimeri inorganici silicoalluminati tridimensionali semi-cristallini, hanno attirato crescente attenzione da una vasta gamma di interessi scientifici. L'argomento di questo studio riguarda la sintesi, la caratterizzazione e le potenziali applicazioni di geopolimeri porosi (PG) o schiume di geopolimeri (GF, porosità totale> 70% vol), realizzati attraverso diversi percorsi di lavorazione. In primo luogo, i processi sono suddivisi in cinque categorie: (i) schiumatura diretta, (ii) metodo di replica, (iii) modello sacrificale, (iv) stampa 3D e (v) altri. Anche la microstruttura, la porosità e le proprietà dei geopolimeri porosi sono state confrontate e discusse. In secondo luogo, i geopolimeri porosi basati su K sono stati prodotti mediante schiumatura diretta utilizzando perossido di idrogeno come agente chimico di formazione dei pori (PFA) combinato con tre tipi di agente stabilizzante (SA, bianco d'uovo, Tween 80, oli vegetali) e mediante schiumatura diretta più reattivo emulsione che modella. Inoltre, geopolimeri porosi a base di fosfato a cellule aperte sono stati ottenuti con un semplice metodo di schiumatura diretta (usando Triton X-100 come agente fisico di formazione dei pori). Sono state studiate la porosità, la morfologia dei pori, le prestazioni ad alte temperature, l'adsorbimento, le proprietà meccaniche e isolanti delle PG. I PG ad alta resistenza con porosità adattata e struttura macroporosa controllata sono stati fabbricati con diversi processi. I risultati suggeriscono che i geopolimeri porosi promettono candidati altamente porosi a basso costo per potenziali applicazioni come catalizzatori o supporti a membrana (elevata porosità aperta e alta resistenza), adsorbimento (alta efficienza di rimozione e capacità di adsorbimento con elevata porosità aperta) e isolanti (basso materiali di conducibilità termica, elevata porosità e resistenza accettabile).
Zahedi, Maryam. "Meshfree Method for Prediction of Thermal Properties of Porous Ceramic Materials". FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/954.
Pełny tekst źródłaZihms, Stephanie Gabriele. "Smouldering and thermal remediation effects on properties and behaviour of porous media". Thesis, University of Strathclyde, 2013. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=23194.
Pełny tekst źródłaKsiążki na temat "Thermal properties of porous foam"
Ene, Horia I. Thermal flow in porous media. Dordrecht, Holland: D. Reidel Pub. Co., 1987.
Znajdź pełny tekst źródłaThe thermophysics of porous media. Boca Raton, Fla: Chapman & Hall/CRC, 2002.
Znajdź pełny tekst źródłaA, Charlez Philippe, red. Mechanics of porous media. Rotterdam: A.A. Balkema, 1995.
Znajdź pełny tekst źródłaAndreas, Öchsner, Murch G. E i Lemos, Marcelo J. S. de., red. Cellular and porous materials: Thermal properties simulation and prediction. Weinheim: Wiley-VCH, 2008.
Znajdź pełny tekst źródła1948-, Bejan Adrian, red. Convection in porous media. New York: Springer-Verlag, 1992.
Znajdź pełny tekst źródłaNield, Donald A. Convection in porous media. Wyd. 2. New York: Springer, 1999.
Znajdź pełny tekst źródłaMechanics of Porous Media Summer School (1994 Aussois, France). Mechanics of porous media: Lecture notes of the Mechanics of Porous Media Summer School, June 1994. Rotterdam: A.A. Balkema, 1995.
Znajdź pełny tekst źródłaKaviany, M. Principles of heat transfer in porous media. New York: Springer-Verlag, 1991.
Znajdź pełny tekst źródłaKaviany, M. Principles of heat transfer in porous media. Wyd. 2. New York: Springer-Verlag, 1995.
Znajdź pełny tekst źródłaSparks, Larry L. Thermal conductivity of selected foams and systems from 100 to 300 K. Boulder, Colo: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Znajdź pełny tekst źródłaCzęści książek na temat "Thermal properties of porous foam"
Koshida, Nobuyoshi. "Thermal Properties of Porous Silicon". W Handbook of Porous Silicon, 1–7. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04508-5_20-1.
Pełny tekst źródłaKoshida, Nobuyoshi. "Thermal Properties of Porous Silicon". W Handbook of Porous Silicon, 1–9. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-04508-5_20-2.
Pełny tekst źródłaKoshida, Nobuyoshi. "Thermal Properties of Porous Silicon". W Handbook of Porous Silicon, 207–12. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05744-6_20.
Pełny tekst źródłaKoshida, Nobuyoshi. "Thermal Properties of Porous Silicon". W Handbook of Porous Silicon, 299–307. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71381-6_20.
Pełny tekst źródłaGladkov, S. O. "On Specific Features of Thermal Conduction and Diffusion in Porous Dielectrics". W Dielectric Properties of Porous Media, 115–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-06705-5_5.
Pełny tekst źródłaPitre, John J., i Joseph L. Bull. "Imaging the Mechanical Properties of Porous Biological Tissue". W Handbook of Thermal Science and Engineering, 831–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-26695-4_38.
Pełny tekst źródłaPitre, John J., i Joseph L. Bull. "Imaging the Mechanical Properties of Porous Biological Tissue". W Handbook of Thermal Science and Engineering, 1–27. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-32003-8_38-2.
Pełny tekst źródłaLyubimov, Dmitry V. "Dynamic Properties of Thermal Convection in Porous Medium". W Instabilities in Multiphase Flows, 289–95. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1594-8_24.
Pełny tekst źródłaPranoto, I., K. C. Leong, A. A. Rofiq, H. M. Arroisi i M. A. Rahman. "Study on the Pool Boiling Bubble Departure Diameter and Frequency from Porous Graphite Foam Structures". W Advances in Heat Transfer and Thermal Engineering, 217–23. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4765-6_40.
Pełny tekst źródłaSun, Xiaowei, Miao Gao, Honghong Zhou, Jing Lv i Zhaoyang Ding. "Influence of Fiber on Properties of Graphite Tailings Foam Concrete". W Lecture Notes in Civil Engineering, 508–15. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1260-3_46.
Pełny tekst źródłaStreszczenia konferencji na temat "Thermal properties of porous foam"
Druma, A. M., M. K. Alam i C. Druma. "Numerical Analysis of Conduction in a Foam". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39550.
Pełny tekst źródłaChai, Yue, Xiaohu Yang, Xiangzhao Meng, Qunli Zhang i Liwen Jin. "Study of Micro-Structure Based Effective Thermal Conductivity of Graphite Foam". W ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/mnhmt2016-6721.
Pełny tekst źródłaDruma, C., M. K. Alam i A. M. Druma. "Model of Multiscale Transport in Carbon Foams". W ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41309.
Pełny tekst źródłaZhang, Xinming, Qinghua Chen i Danling Zeng. "The Fractal Model of Heat Conduction of Graphite Foam". W ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15470.
Pełny tekst źródłaKrittacom, Bundit, i Kouichi Kamiuto. "High-Temperature Emission Characteristics of Open-Cellular Porous Plates". W ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32241.
Pełny tekst źródłaBuonomo, Bernardo, Anna di Pasqua, Davide Ercole, Oronzio Manca i Sergio Nardini. "Numerical Investigation on Thermal and Fluid Dynamic Behaviors of a Thermoelectric Generator in an Exhaust Automotive Line With Aluminium Foam". W ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11575.
Pełny tekst źródłaAdegbaye, Patrick, Yong Pei, Mehdi Kabir, Herve Cabrel Sandja Tchamba, Bao Yang i Jiajun Xu. "Development of Phase-Change Materials with Improved Thermal Properties for Space-Related Applications". W ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94380.
Pełny tekst źródłaLin, Fang-Ming, Eric Anderssen i Raymond K. Yee. "Heat Transfer Interface to Graphitic Foam". W ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10691.
Pełny tekst źródłaBuonomo, Bernardo, Anna di Pasqua, Oronzio Manca i Sergio Nappo. "Entropy Generation Analysis on a Thermoelectric Generator in an Exhaust Automotive Line With Porous Media". W ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94797.
Pełny tekst źródłaHargis, P. J. "Photochemical and thermal effects in the UV laser ablation of low-density materials". W International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.fb1.
Pełny tekst źródłaRaporty organizacyjne na temat "Thermal properties of porous foam"
TRUONG, THANH-TAM. EFFECTS OF IRRADIATION ON THERMAL PROPERTIES OF POLYURETHANE FOAM. Office of Scientific and Technical Information (OSTI), lipiec 2021. http://dx.doi.org/10.2172/1813937.
Pełny tekst źródłaRossiter, Walter J., i Paul W. Brown. An initial investigation of the properties and performance of magnesium oxychloride-based foam thermal insulation. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.ir.87-3642.
Pełny tekst źródłaRadhakrishna, H. S., i J. F. Wright. A review and assessment of current technologies and techniques for measuring the thermal properties of solids and porous materials. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2006. http://dx.doi.org/10.4095/222526.
Pełny tekst źródłaBaral, Aniruddha, Jeffery Roesler i Junryu Fu. Early-age Properties of High-volume Fly Ash Concrete Mixes for Pavement: Volume 2. Illinois Center for Transportation, wrzesień 2021. http://dx.doi.org/10.36501/0197-9191/21-031.
Pełny tekst źródłaBaral, Aniruddha, Jeffrey Roesler, M. Ley, Shinhyu Kang, Loren Emerson, Zane Lloyd, Braden Boyd i Marllon Cook. High-volume Fly Ash Concrete for Pavements Findings: Volume 1. Illinois Center for Transportation, wrzesień 2021. http://dx.doi.org/10.36501/0197-9191/21-030.
Pełny tekst źródła