Gotowa bibliografia na temat „Thermal Expansion Coefficient”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Thermal Expansion Coefficient”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Thermal Expansion Coefficient"
Haverland, Gordon Wayne. "Thermal expansion coefficient". JOM 49, nr 8 (sierpień 1997): 6. http://dx.doi.org/10.1007/bf02914380.
Pełny tekst źródłaOku, Tatsuo, i Shinichi Baba. "Coefficient of Thermal Expansion". TANSO 2002, nr 202 (2002): 90–95. http://dx.doi.org/10.7209/tanso.2002.90.
Pełny tekst źródłaSugimoto, Hideki, Ken Imamura, Kazuki Sakami, Katsuhiro Inomata i Eiji Nakanishi. "Transparent Acryl‐Alumina Nano‐Hybrid Materials with Low Coefficient of Thermal Expansion". Sen'i Gakkaishi 71, nr 11 (2015): 333–38. http://dx.doi.org/10.2115/fiber.71.333.
Pełny tekst źródłaYang, Rui, Qing Yang i Bin Niu. "Design and study on the tailorable directional thermal expansion of dual-material planar metamaterial". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, nr 3 (7.11.2019): 837–46. http://dx.doi.org/10.1177/0954406219884973.
Pełny tekst źródłaMiyazawa, S. "Coefficient of Thermal Expansion of Concrete". Concrete Journal 56, nr 5 (2018): 368–72. http://dx.doi.org/10.3151/coj.56.5_368.
Pełny tekst źródłaRoy, R., D. K. Agrawal i H. A. McKinstry. "Very Low Thermal Expansion Coefficient Materials". Annual Review of Materials Science 19, nr 1 (sierpień 1989): 59–81. http://dx.doi.org/10.1146/annurev.ms.19.080189.000423.
Pełny tekst źródłaTakeda, Jun, Yukio Yasui, Hisashi Sasaki i Masatoshi Sato. "Thermal Expansion Coefficient of BaCo1-xNixS2". Journal of the Physical Society of Japan 66, nr 6 (15.06.1997): 1718–22. http://dx.doi.org/10.1143/jpsj.66.1718.
Pełny tekst źródłaTalwar, D. N., i Joseph C. Sherbondy. "Thermal expansion coefficient of 3C–SiC". Applied Physics Letters 67, nr 22 (27.11.1995): 3301–3. http://dx.doi.org/10.1063/1.115227.
Pełny tekst źródłaTrumper, Ricardo, i Moshe Gelbman. "Measurement of a thermal expansion coefficient". Physics Teacher 35, nr 7 (październik 1997): 437–38. http://dx.doi.org/10.1119/1.2344750.
Pełny tekst źródłaLow, D., T. Sumii i M. Swain. "Thermal expansion coefficient of titanium casting". Journal of Oral Rehabilitation 28, nr 3 (marzec 2001): 239–42. http://dx.doi.org/10.1046/j.1365-2842.2001.00664.x.
Pełny tekst źródłaRozprawy doktorskie na temat "Thermal Expansion Coefficient"
Okada, Yoshio 1928. "The thermal expansion coefficient of polypropylene and related composites /". Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=56778.
Pełny tekst źródłaIn this project, a model has been proposed for estimating the LTEC of fibre reinforced plastics as a function of crystallinity, matrix orientation, and fibre concentration and orientation. Also, extensive data have been obtained regarding the LTEC of polypropylene with and without fibre reinforcement. Extruded pellets and injection molded parts were considered. Model predictions have been compared with experimental data.
Sakyi-bekoe, Kwame Opare Schindler Anton K. "Assessment of the coefficient of thermal expansion of Alabama concrete". Auburn, Ala, 2008. http://hdl.handle.net/10415/1435.
Pełny tekst źródłaKulkarni, Raghav Shrikant. "Characterization of carbon fibers: coefficient of thermal expansion and microstructure". Texas A&M University, 2004. http://hdl.handle.net/1969.1/3073.
Pełny tekst źródłaRassi, Erik Michael. "An inverse approach to coefficient of thermal expansion optimization in optical structures". Thesis, Montana State University, 2007. http://etd.lib.montana.edu/etd/2007/rassi/RassiE1207.pdf.
Pełny tekst źródłaGutierrez, Emmanuel David Mercado. "Thermal expansion coefficient for a trapped Bose gas during phase transition". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-27102016-102903/.
Pełny tekst źródłaAmostras atômicas ultrafrias de um gás de Bose são convenientes para estudar questões fundamentais da física moderna, como as transições de fase e fenômenos críticos em condensados de Bose-Einstein (BEC). A minha dissertação dedica se à investigação das susceptibilidades termodinâmicas como a compressibilidade isotérmica e o coeficiente de expansão térmica de a traves da transição de um BEC de 87Rb. Os fenômenos críticos e os exponentes críticos a traves da transição podem explicar o comportamento da compressibilidade isotérmica e do coeficiente de expansão térmica perto da temperatura crítica TC. Ao empregar o desenvolvido formalismo das variáveis termodinâmicas globais, levamos a cabo o tratamento estatístico de um gás de Bose num potencial harmônico 3D. Depois da comparação dos resultados obtidos, revelam as mais apropriadas variáveis de estado descrevendo o sistema, chamadas parâmetro de volume e pressão, V e Π respectivamente. As duas estão relacionadas com as frequências de confinamento e a distribuição de densidade do BEC. Nós aplicamos esta abordagem para definir um conjunto de novas variáveis termodinâmicas do BEC, e também para construir o diagrama de fase isobárico V T. O anterior nós permite extrair a compressibilidade κT e o coeficiente de expansão termina βΠ. O comportamento da compressibilidade isotérmica corresponde a uma transição de fase de segunda ordem enquanto que o coeficiente de expansão térmica ao redor do ponto crítico comporta se como β ∼ tr-α, onde tr é a temperatura reduzida do sistema, e α o exponente crítico. Deste resultado nós obtemos um exponente critico, α = 0.15 ± 0.09, que permite determinar a dimensionalidade do sistema a traves da teoria de escala, relacionando os exponentes críticos com a dimensionalidade. Como resultado, encontramos que a dimensionalidade do sistema é d ∼ 3 que está de acordo como a dimensão real do sistema.
Hacker, Paul John. "A study of the coefficient of thermal expansion of nuclear graphites". Thesis, University of Bath, 2001. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341579.
Pełny tekst źródłaMaravola, Michael. "Low Coefficient of Thermal Expansion Composite Tooling Manufactured via Additive Manufacturing Technologies". Youngstown State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ysu154704993501967.
Pełny tekst źródłaPRISCO, LUCIANA PRATES. "SYNTHESIS OF AL2MO3O12 NANOMETRIC POWDERS FOR OPTIMIZATION OF BULK COEFFICIENT OF THERMAL EXPANSION". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2012. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=21439@1.
Pełny tekst źródłaCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
A síntese de pós nanométricos do Al2Mo3O12 para otimização de seu coeficiente de expansão térmica na forma maciça tem como objetivo principal aproximar o comportamento térmico intrínseco e extrínseco do material. A expansão térmica intrinseca de escala atomica é medida por difração de raios-X a partir do aumento dos parametros de rede, por outro lado, a tecnica de dilatometria mede ambos os efeitos tanto intrinsecos quanto extrinsecos provenientes da microestrutura. Materiais anisotropicos apresentam coeficientes de expansão termica diferentes ao longo dos eixos cristalograficos, e com isso são encontradas maiores diferenças entre as propriedades intrinseca e maciça da expansão termica. Dessa forma a aplicação desses materias anisotropicos na forma maciça é comprometida devido a formação de microtrincas. O Al2Mo3O12 foi obtido na forma nanometrica pela síntese por coprecipitação e na forma micrométrica pela síntese de sol-gel assistido com álcool polivinilico e por reação em estado solido. Dessa forma o resultado de CET maciço obtidos pelos três métodos foram comparados entre si e também comparados aos existentes na literatura para comportamento intrínseco e maciço. Os resultados mostraram que o Al2Mo3O12 na forma nanometrica possui resultado de CET maciço muito próximo ao intrínseco, diferente do obtido para o micrométrico e também do já reportado na literatura,o que confirma que a partir de um tamanho de cristal critico não seria mais possível obter um mesmo CET intrínseco e maciço para um mesmo material.
Optimization of the bulk thermal expansion coefficient of the Al2Mo3O12 using nanometric powder in order to approximate the intrinc and the extrinsic thermal properties.When a solid body is exposed to temperature variation, a change of dimensions will occur due to emergence of different effects originating at atomic (intrinsic) or microstructural (extrinsic) scales. The intrinsic thermal expansion is measured by X-ray diffraction from lattice parameters increase, on the other hand, the technique of dilatometric measures both the intrinsic as both extrinsic effects may then be defined as their CTE solid (bulk). Cubic materials exhibit isotropic behavior during thermal expansion, and thus may be insignificant variations between intrinsic and CTE s massive. Anisotropic materials have different coefficients of thermal expansion along the crystallographic axes, and presents major differences between the intrinsic properties and thermal expansion of the bulk, being mostly a bulk CTE smaller than the intrinsic one. The application of these anisotropic materials is difficult because bulk CTE massive changes expected due to formation of microcracks. The Al2Mo3O12 was obtained by three routes :coprecipitation (nanometric way) , sol-gel assisted with polyvinyl alcohol (PVA) and by solid state reaction (micrometric ways). Thus the result of bulk CET obtained by the three methods were compared and also compared with those found in the literature for intrinsic behavior and bulk. The nanometric Al2Mo3O12 showed a bulk linear CTE close to the intrinsic value, whereas micrometric one showed a negative bulk CTE ,which confirms that from a critical cristal size it is no possible to obtain bulk CTE close to the intrinsic one.
Archer, Robert Joseph 1957. "Effects of spacial variation of the thermal coefficient of expansion on optical surfaces". Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276887.
Pełny tekst źródłaNeekhra, Siddharth. "A new mineralogical approach to predict coefficient of thermal expansion of aggregate and concrete". Texas A&M University, 2004. http://hdl.handle.net/1969.1/1461.
Pełny tekst źródłaKsiążki na temat "Thermal Expansion Coefficient"
C, Maciag, i United States. National Aeronautics and Space Administration., red. The effect of bromination of carbon fibers on the coefficient of thermal expansion of graphite fiber-epoxy composites. [Washington, D.C.]: National Aeronautics and Space Administration, 1987.
Znajdź pełny tekst źródłaA, Fellenstein J., i United States. National Aeronautics and Space Administration., red. The effect of compositional tailoring on the thermal expansion and tribological properties of PS300: A solid lubricant composite coating. [Washington, D.C: National Aeronautics and Space Administration, 1996.
Znajdź pełny tekst źródłaCenter, Lewis Research, i United States. National Aeronautics and Space Administration., red. Micromechanical prediction of the effective coefficients of thermo-piezoelectric multiphase composites. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "Thermal Expansion Coefficient"
Gooch, Jan W. "Thermal-Expansion Coefficient". W Encyclopedic Dictionary of Polymers, 742. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11748.
Pełny tekst źródłaMeyer, B. K. "ZnO: thermal expansion coefficient". W New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 620. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_343.
Pełny tekst źródłaGooch, Jan W. "Coefficient of Thermal Expansion". W Encyclopedic Dictionary of Polymers, 151. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2539.
Pełny tekst źródłada Silva, E. C. F. "GaSb: linear thermal expansion coefficient". W Landolt-Börnstein - Group III Condensed Matter, 180. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23415-6_103.
Pełny tekst źródłaGooch, Jan W. "Volume Coefficient of Thermal Expansion". W Encyclopedic Dictionary of Polymers, 801. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12643.
Pełny tekst źródłaHönerlage, B. "CuCl, gamma modification: thermal expansion coefficient". W New Data and Updates for I-VII, III-V, III-VI and IV-VI Compounds, 132. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-48529-2_39.
Pełny tekst źródłaFernandes da Silva, E. C. "AlGaxAs1–x: linear thermal expansion coefficient". W New Data and Updates for III-V, II-VI and I-VII Compounds, 61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-92140-0_49.
Pełny tekst źródłaStrauch, D. "BN: equation of state, thermal expansion coefficient". W New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors, 245–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14148-5_133.
Pełny tekst źródłaHerwig, Heinz. "Thermischer Ausdehnungskoeffizient β* (thermal expansion coefficient β*)". W Wärmeübertragung A-Z, 255–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56940-1_57.
Pełny tekst źródłaWiff, J. P., Y. Kinemuchi, S. Naito, A. Uozumi i K. Watari. "Thermal Expansion Coefficient of SiO2-Added Leucite Ceramics". W Mechanical Properties and Performance of Engineering Ceramics and Composites IV, 241–48. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470584262.ch23.
Pełny tekst źródłaStreszczenia konferencji na temat "Thermal Expansion Coefficient"
Poplavko, Y. M., Y. V. Didenko i Y. I. Yakimenko. "Negative Thermal Expansion Coefficient". W 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). IEEE, 2019. http://dx.doi.org/10.1109/ukrcon.2019.8879790.
Pełny tekst źródłaMadenci, Erdogan, Atila Barut i Mehmet Dorduncu. "Peridynamics for Predicting Thermal Expansion Coefficient of Graphene". W 2019 IEEE 69th Electronic Components and Technology Conference (ECTC). IEEE, 2019. http://dx.doi.org/10.1109/ectc.2019.00130.
Pełny tekst źródłaPomp, Norbert, i Pavel Kloucek. "Longer Parts Coefficient of Thermal Expansion Measurement Method". W 2021 13th International Conference on Measurement. IEEE, 2021. http://dx.doi.org/10.23919/measurement52780.2021.9446836.
Pełny tekst źródłaKondo, Kazuo, Shingo Mukahara, Jin Onuki, Taro Hayashi i Masayuki Yokoi. "Reduction of thermal expansion coefficient of electrodeposited copper". W 2015 IEEE 65th Electronic Components and Technology Conference (ECTC). IEEE, 2015. http://dx.doi.org/10.1109/ectc.2015.7159660.
Pełny tekst źródłaOLIVIERI, E., E. PASCA, G. VENTURA, M. BARUCCI i L. RISEGARI. "THERMAL EXPANSION COEFFICIENT OF COLD-PRESSED SILICON CARBIDE". W Proceedings of the 8th Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702708_0087.
Pełny tekst źródłaPodrażka, Jacek, Paweł Bogusz i Wiesław Barnat. "Thermal expansion coefficient influence on FML material deformation under thermal load". W COMPUTATIONAL TECHNOLOGIES IN ENGINEERING (TKI’2018): Proceedings of the 15th Conference on Computational Technologies in Engineering. Author(s), 2019. http://dx.doi.org/10.1063/1.5092097.
Pełny tekst źródłaXie, Yan, Dengfeng Lu i Jingjun Yu. "Bimaterial Micro-Structured Annulus With Zero Thermal Expansion Coefficient". W ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68142.
Pełny tekst źródłaMwanang'onze, Hanakumbo, Ian D. Moore i Mark Green. "Coefficient of Thermal Expansion Characterization for Plain Polyethylene Pipe". W Pipeline Engineering and Construction International Conference 2003. Reston, VA: American Society of Civil Engineers, 2003. http://dx.doi.org/10.1061/40690(2003)142.
Pełny tekst źródłaBeghini, M., L. Bertini i F. Frendo. "Thermal Expansion of Thermally Sprayed Coatings". W ITSC 1998, redaktor Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p1595.
Pełny tekst źródłaBadami, Vivek G., i Michael Linder. "Ultrahigh-accuracy measurement of the coefficient of thermal expansion for ultralow-expansion materials". W SPIE's 27th Annual International Symposium on Microlithography, redaktor Roxann L. Engelstad. SPIE, 2002. http://dx.doi.org/10.1117/12.472323.
Pełny tekst źródłaRaporty organizacyjne na temat "Thermal Expansion Coefficient"
Thompson, Darla Graff, i Racci DeLuca. Coefficient of Thermal Expansion of Pressed PETN Pellets. Office of Scientific and Technical Information (OSTI), marzec 2015. http://dx.doi.org/10.2172/1172824.
Pełny tekst źródłaThompson, Darla Graff, Caitlin Savanna Woznick i Racci DeLuca. The Volumetric Coefficient of Thermal Expansion of PBX 9502. Office of Scientific and Technical Information (OSTI), marzec 2018. http://dx.doi.org/10.2172/1425787.
Pełny tekst źródłaCarter, Austin D., i S. Elhadj. Modulus of Elasticity and Thermal Expansion Coefficient of ITO Film. Office of Scientific and Technical Information (OSTI), czerwiec 2016. http://dx.doi.org/10.2172/1325877.
Pełny tekst źródłaCasias, Zachary. High Throughput Coefficient Thermal Expansion Testing Utilizing Digital Image Correlation. Office of Scientific and Technical Information (OSTI), listopad 2022. http://dx.doi.org/10.2172/1898723.
Pełny tekst źródłaDuvall, Donovan S., Michael D. Hale, Donald J. Lewis i Arthur D. Snyder. Determination of the Coefficient of Thermal Expansion of JP-4 Fuels. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1985. http://dx.doi.org/10.21236/ada171495.
Pełny tekst źródłaPerham, T. Joining of silicon carbide using interlayer with matching coefficient of thermal expansion. Office of Scientific and Technical Information (OSTI), listopad 1996. http://dx.doi.org/10.2172/432941.
Pełny tekst źródłaBishop, Sean, Daniel Lowry, Amanda Peretti, Mia Blea-Kirby, Perla Salinas, Eric Coker, Edward Arata i in. Processing, structure, and thermal properties of ZrW2O8, HfW2O8, HfMgW3O12, Al(HfMg)0.5W3O12, and Al0.5Sc1.5W3O12 negative and zero thermal expansion coefficient ceramics. Office of Scientific and Technical Information (OSTI), wrzesień 2022. http://dx.doi.org/10.2172/1890063.
Pełny tekst źródłaDeSmith, Matthew. Changes to the morphology and coefficient of thermal expansion in HDPE and UHMWPE following irradiation-based crosslinking. Office of Scientific and Technical Information (OSTI), wrzesień 2022. http://dx.doi.org/10.2172/1887095.
Pełny tekst źródłaC.B. Skidmore, T.A. Butler i C.W. Sandoval. The Elusive Coefficients of Thermal Expansion in PBX 9502. Office of Scientific and Technical Information (OSTI), maj 2003. http://dx.doi.org/10.2172/809945.
Pełny tekst źródłaFeng, W., i T. Hoheisel. Coefficients of thermal expansion for a carbon-carbon composite. Office of Scientific and Technical Information (OSTI), listopad 1989. http://dx.doi.org/10.2172/5244635.
Pełny tekst źródła