Artykuły w czasopismach na temat „Thermal Dewetting”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Thermal Dewetting”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Gamboa, Arielle R., Michael P. Nitzsche, Valeria Saro-Cortes, Tianxing Ma, Lin Lei i Jonathan P. Singer. "Thermocapillary Multidewetting of Thin Films". MRS Advances 3, nr 18 (2018): 977–82. http://dx.doi.org/10.1557/adv.2018.327.
Pełny tekst źródłaBonvicini, Stephanie Nicole, Bo Fu, Alison Joy Fulton, Zhitai Jia i Yujun Shi. "Formation of Au, Pt, and bimetallic Au–Pt nanostructures from thermal dewetting of single-layer or bilayer thin films". Nanotechnology 33, nr 23 (17.03.2022): 235604. http://dx.doi.org/10.1088/1361-6528/ac5a83.
Pełny tekst źródłaKwak, Taejin, i Dongchoul Kim. "Controlling Equilibrium Morphologies of Bimetallic Nanostructures Using Thermal Dewetting via Phase-Field Modeling". Materials 14, nr 21 (7.11.2021): 6697. http://dx.doi.org/10.3390/ma14216697.
Pełny tekst źródłaPangpaiboon, Nampueng, i Nisanart Traiphol. "Dewetting Suppression of Polystyrene Thin Film Using Titanium Dioxide Nanoparticles". Key Engineering Materials 608 (kwiecień 2014): 218–23. http://dx.doi.org/10.4028/www.scientific.net/kem.608.218.
Pełny tekst źródłaAndrikaki, Sonia, Katerina Govatsi, Spyros N. Yannopoulos, George A. Voyiatzis i Konstantinos S. Andrikopoulos. "Thermal dewetting tunes surface enhanced resonance Raman scattering (SERRS) performance". RSC Advances 8, nr 51 (2018): 29062–70. http://dx.doi.org/10.1039/c8ra05451g.
Pełny tekst źródłaBeshr, M., E. Dexter, P. E. Tierney, A. D. Meade, S. Murphy i G. Amarandei. "Towards plasmon mapping of SERS-active Ag dewetted nanostructures using SPELS". Journal of Physics: Conference Series 2172, nr 1 (1.02.2022): 012012. http://dx.doi.org/10.1088/1742-6596/2172/1/012012.
Pełny tekst źródłaScandurra, Antonino, Maria Censabella, Stefano Boscarino, Guglielmo Guido Condorelli, Maria Grazia Grimaldi i Francesco Ruffino. "Fabrication of Cu(II) oxide-hydroxide nanostructures onto graphene paper by laser and thermal processes for sensitive nano-electrochemical sensing of glucose". Nanotechnology 33, nr 4 (2.11.2021): 045501. http://dx.doi.org/10.1088/1361-6528/ac2d0b.
Pełny tekst źródłaPotejanasak, Potejana, Masahiko Yoshino, Motoki Terano i Masahiro Mita. "Efficient Fabrication Process of Metal Nanodot Arrays Using Direct Nanoimprinting Method with a Polymer Mold". International Journal of Automation Technology 9, nr 6 (5.11.2015): 629–35. http://dx.doi.org/10.20965/ijat.2015.p0629.
Pełny tekst źródłaPotejanasak, Potejana, Masahiko Yoshino i Motoki Terano. "Fabrication of Metallic Nanodot Arrays Using Nano-Chemical Stamping Technique with a Polymer Stamp". International Journal of Automation Technology 10, nr 5 (5.09.2016): 794–803. http://dx.doi.org/10.20965/ijat.2016.p0794.
Pełny tekst źródłaClarke, Christian, Deming Liu, Fan Wang, Yongtao Liu, Chaohao Chen, Cuong Ton-That, Xiaoxue Xu i Dayong Jin. "Large-scale dewetting assembly of gold nanoparticles for plasmonic enhanced upconversion nanoparticles". Nanoscale 10, nr 14 (2018): 6270–76. http://dx.doi.org/10.1039/c7nr08979a.
Pełny tekst źródłaKim, Minjun, Hyun-Ju Ahn, Vanna Chrismas Silalahi, Damun Heo, Samir Adhikari, Yudong Jang, Jongmin Lee i Donghan Lee. "Dual-Dewetting Process for Self-Assembled Nanoparticle Clusters in Wafer Scale". International Journal of Molecular Sciences 24, nr 17 (23.08.2023): 13102. http://dx.doi.org/10.3390/ijms241713102.
Pełny tekst źródłaLiu, Chih-Ting, Chia-Chan Tsai, Chien-Wei Chu, Mu-Huan Chi, Pei-Yun Chung i Jiun-Tai Chen. "Dewetting of polymer thin films on modified curved surfaces: preparation of polymer nanoparticles with asymmetric shapes by anodic aluminum oxide templates". Soft Matter 14, nr 15 (2018): 2772–76. http://dx.doi.org/10.1039/c8sm00318a.
Pełny tekst źródłaKnavel, S. A., T. V. Savina, M. V. Mroz, M. E. Kordesch, C. N. Eads, J. T. Sadowski i S. A. Tenney. "A mathematical model of solid-state dewetting of barium thin films on W(112)". Mathematical Modelling of Natural Phenomena 15 (2020): 12. http://dx.doi.org/10.1051/mmnp/2019040.
Pełny tekst źródłaLi, Ming-Yu, Mao Sui, Puran Pandey, Quan-zhen Zhang, Sundar Kunwar, Gregory J. Salamo i Jihoon Lee. "Precise control of configuration, size and density of self-assembled Au nanostructures on 4H-SiC (0001) by systematic variation of deposition amount, annealing temperature and duration". CrystEngComm 18, nr 19 (2016): 3347–57. http://dx.doi.org/10.1039/c5ce02439k.
Pełny tekst źródłaFang, Xinyi, Mohammad Ayaz Masud, Gianluca Piazza i James Bain. "Interface dewetting as a source of void formation and aggregation in phase change nanoscale actuators". Applied Physics Letters 122, nr 5 (30.01.2023): 051602. http://dx.doi.org/10.1063/5.0137456.
Pełny tekst źródłaWang, Lu, Zuobin Wang, Li Li, Jingran Zhang, Jinyun Liu, Jing Hu, Xiaomin Wu i in. "Magnetic–plasmonic Ni@Au core–shell nanoparticle arrays and their SERS properties". RSC Advances 10, nr 5 (2020): 2661–69. http://dx.doi.org/10.1039/c9ra10354f.
Pełny tekst źródłaYoshino, Masahiko, Yusuke Kubota, Yuki Nakagawa i Motoki Terano. "Efficient Fabrication Process of Ordered Metal Nanodot Arrays for Infrared Plasmonic Sensor". Micromachines 10, nr 6 (8.06.2019): 385. http://dx.doi.org/10.3390/mi10060385.
Pełny tekst źródłaScandurra, Antonino, Francesco Ruffino, Maria Censabella, Antonio Terrasi i Maria Grazia Grimaldi. "Dewetted Gold Nanostructures onto Exfoliated Graphene Paper as High Efficient Glucose Sensor". Nanomaterials 9, nr 12 (16.12.2019): 1794. http://dx.doi.org/10.3390/nano9121794.
Pełny tekst źródłaLy, Linh Quy, Alison Joy Fulton, Stephanie Nicole Bonvicini i Yujun Shi. "Pulsed laser-induced dewetting and thermal dewetting of Ag thin films for the fabrication of Ag nanoparticles". Nanotechnology 32, nr 33 (24.05.2021): 335301. http://dx.doi.org/10.1088/1361-6528/abfee7.
Pełny tekst źródłaUENO, Takayuki, Masahiko YOSHINO i Motoki TERANO. "2504 Development of Double Layer Nano-rod Resonators by Utilizing the Templated Thermal Dewetting Method". Proceedings of International Conference on Leading Edge Manufacturing in 21st century : LEM21 2015.8 (2015): _2504–1_—_2504–5_. http://dx.doi.org/10.1299/jsmelem.2015.8._2504-1_.
Pełny tekst źródłaPOTEJANA, Potejanasak, Masahiko YOSHINO i Motoki TERANO. "2503 Fabrication of nanodot arrays by the templated thermal dewetting method using nano chemical stamp technique". Proceedings of International Conference on Leading Edge Manufacturing in 21st century : LEM21 2015.8 (2015): _2503–1_—_2503–5_. http://dx.doi.org/10.1299/jsmelem.2015.8._2503-1_.
Pełny tekst źródłaKim, Hyun-Joon, i Dae-Eun Kim. "Frictional behavior of Ag nanodot-pattern fabricated by thermal dewetting". Surface and Coatings Technology 215 (styczeń 2013): 234–40. http://dx.doi.org/10.1016/j.surfcoat.2012.05.146.
Pełny tekst źródłaUeno, Takayuki, Motoki Terano i Masahiko Yoshino. "Templated Thermal Dewetting Process by Utilizing Nano Plastic Forming Technology". Procedia Engineering 81 (2014): 1469–74. http://dx.doi.org/10.1016/j.proeng.2014.10.175.
Pełny tekst źródłaDouaud, Alexandre, Sandra Helena Messaddeq i Younès Messaddeq. "Microstructure formation in chalcogenide thin films assisted by thermal dewetting". Journal of Materials Science: Materials in Electronics 28, nr 10 (28.10.2016): 6989–99. http://dx.doi.org/10.1007/s10854-016-5937-8.
Pełny tekst źródłaOda, Hirokazu, Tomoyuki Ohtake, Toshiaki Takaoka i Masaru Nakagawa. "Photoreactive Chemisorbed Monolayer Suppressing Polymer Dewetting in Thermal Nanoimprint Lithography". Langmuir 25, nr 12 (16.06.2009): 6604–6. http://dx.doi.org/10.1021/la900902f.
Pełny tekst źródłaTamang, Siddharth, Nitish Kumar i S. Aravindan. "Effect of Gold Nano Dots in Microwave Brazing: A Novel Approach to Join Ti6Al4V to MACOR®". Key Engineering Materials 821 (wrzesień 2019): 222–28. http://dx.doi.org/10.4028/www.scientific.net/kem.821.222.
Pełny tekst źródłaCho, Chia-Yu, Jui-Chen Chang, Min-Xian Cai, Pei-Ting Lin i Yao-Joe Yang. "Dewetting Process of Silver Thin Films and Its Application on Percolative Pressure Sensors with High Sensitivity". Polymers 15, nr 1 (30.12.2022): 180. http://dx.doi.org/10.3390/polym15010180.
Pełny tekst źródłaDinc, Dilek Ozden, Mehmet Yilmaz, Saime Sebnem Cetin, Mustafa Turk i Erhan Piskin. "Gold-nanoisland-decorated titanium nanorod arrays fabricated by thermal dewetting approach". Surface Innovations 7, nr 5 (1.11.2019): 249–59. http://dx.doi.org/10.1680/jsuin.19.00013.
Pełny tekst źródłaStrobel, Sebastian, Christopher Kirkendall, Jae-Byum Chang i Karl K. Berggren. "Sub-10 nm structures on silicon by thermal dewetting of platinum". Nanotechnology 21, nr 50 (22.11.2010): 505301. http://dx.doi.org/10.1088/0957-4484/21/50/505301.
Pełny tekst źródłaYi, Anchao, Fang Liu, Ming-hui Lin i Guo-zhen Zhu. "Gold-Assisted Growth of Pyramid-shape SrTiO3 Bases During Thermal Dewetting". Microscopy and Microanalysis 25, S2 (sierpień 2019): 818–19. http://dx.doi.org/10.1017/s1431927619004823.
Pełny tekst źródłaWang, Dong, i Peter Schaaf. "Thermal dewetting of thin Au films deposited onto line-patterned substrates". Journal of Materials Science 47, nr 4 (29.06.2011): 1605–8. http://dx.doi.org/10.1007/s10853-011-5716-0.
Pełny tekst źródłaBarrera, Gabriele, Federica Celegato, Matteo Cialone, Marco Coïsson, Paola Rizzi i Paola Tiberto. "Effect of the Substrate Crystallinity on Morphological and Magnetic Properties of Fe70Pd30 Nanoparticles Obtained by the Solid-State Dewetting". Sensors 21, nr 21 (8.11.2021): 7420. http://dx.doi.org/10.3390/s21217420.
Pełny tekst źródłaRoisman, I. V., J. Breitenbach i C. Tropea. "Thermal atomisation of a liquid drop after impact onto a hot substrate". Journal of Fluid Mechanics 842 (6.03.2018): 87–101. http://dx.doi.org/10.1017/jfm.2018.123.
Pełny tekst źródłaBleu, Yannick, Florent Bourquard, Jean-Yves Michalon, Yaya Lefkir, Stéphanie Reynaud, Anne-Sophie Loir, Vincent Barnier, Florence Garrelie i Christophe Donnet. "Transfer-free graphene synthesis by nickel catalyst dewetting using rapid thermal annealing". Applied Surface Science 555 (lipiec 2021): 149492. http://dx.doi.org/10.1016/j.apsusc.2021.149492.
Pełny tekst źródłaColmenares, Yormary Nathaly, Wagner Correr, Sandra Helena Messaddeq i Younès Messaddeq. "Controlling thermal-induced dewetting of As20Se80 thin films for integrated photonics applications". Optical Materials Express 11, nr 6 (14.05.2021): 1720. http://dx.doi.org/10.1364/ome.423938.
Pełny tekst źródłaYoshino, Masahiko, Hiroki Osawa i Akinori Yamanaka. "Effects of process conditions on nano-dot array formation by thermal dewetting". Journal of Manufacturing Processes 14, nr 4 (październik 2012): 478–86. http://dx.doi.org/10.1016/j.jmapro.2012.09.012.
Pełny tekst źródłaPandey, Puran, Mao Sui, Sundar Kunwar, Ming-Yu Li, Quanzhen Zhang i Jihoon Lee. "Determination of growth regimes of Pt nanostructures on GaN (0001) based on the control of Pt thickness and annealing time: Morphological evolution of Pt nanostructures from the nanoparticles, nanoclusters to porous network". Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233, nr 5 (19.06.2017): 913–23. http://dx.doi.org/10.1177/1464420717715878.
Pełny tekst źródłaKosmala, Tomasz, Pawel Palczynski, Matteo Amati, Luca Gregoratti, Hikmet Sezen, Cecilia Mattevi, Stefano Agnoli i Gaetano Granozzi. "Strain Induced Phase Transition of WS2 by Local Dewetting of Au/Mica Film upon Annealing". Surfaces 4, nr 1 (22.12.2020): 1–8. http://dx.doi.org/10.3390/surfaces4010001.
Pełny tekst źródłaAlizadeh Pahlavan, A., L. Cueto-Felgueroso, A. E. Hosoi, G. H. McKinley i R. Juanes. "Thin films in partial wetting: stability, dewetting and coarsening". Journal of Fluid Mechanics 845 (27.04.2018): 642–81. http://dx.doi.org/10.1017/jfm.2018.255.
Pełny tekst źródłaEspich, Taylor, Eduardo Salcedo, Ameya Kulkarni, Daniel Sung Choi i Jong Eun Ryu. "Scalable nanoparticle assembly on carbon nanotubes using flash-induced dewetting". Journal of Composite Materials 51, nr 9 (6.12.2016): 1299–305. http://dx.doi.org/10.1177/0021998316682310.
Pełny tekst źródłaYOSHINO, Masahiko, Li Zhenxing i Akinori YAMANAKA. "J164032 Aggregation mechanism of a metallic nano dot array by thermal dewetting method". Proceedings of Mechanical Engineering Congress, Japan 2012 (2012): _J164032–1—_J164032–4. http://dx.doi.org/10.1299/jsmemecj.2012._j164032-1.
Pełny tekst źródłaLi, Zhenxing, Masahiko Yoshino i Akinori Yamanaka. "Fabrication of three-dimensional ordered nanodot array structures by a thermal dewetting method". Nanotechnology 23, nr 48 (5.11.2012): 485303. http://dx.doi.org/10.1088/0957-4484/23/48/485303.
Pełny tekst źródłaTesler, Alexander B., Lev Chuntonov, Tanya Karakouz, Tatyana A. Bendikov, Gilad Haran, Alexander Vaskevich i Israel Rubinstein. "Tunable Localized Plasmon Transducers Prepared by Thermal Dewetting of Percolated Evaporated Gold Films". Journal of Physical Chemistry C 115, nr 50 (28.11.2011): 24642–52. http://dx.doi.org/10.1021/jp209114j.
Pełny tekst źródłaNiimura, Yusuke, Naoto Oonishi, Kyohei Okubo, Loan Le Thi Ngoc i Edwin T. Carlen. "High-precision nanofabrication technology for metal nanoparticle ensembles using nanotemplate-guided thermal dewetting". Nanoscale 10, nr 30 (2018): 14390–94. http://dx.doi.org/10.1039/c8nr01480a.
Pełny tekst źródłaPhuc, Truong Duc, Motoki Terano i Masahiko Yoshino. "Fabrication of an ordered nanodot array by thermal dewetting on a patterned substrate". Manufacturing Letters 2, nr 2 (kwiecień 2014): 60–63. http://dx.doi.org/10.1016/j.mfglet.2014.02.004.
Pełny tekst źródłaKubo, Masaki, Yosuke Takahashi, Takeshi Fujii, Yang Liu, Ken-ichi Sugioka, Takao Tsukada, Kimitaka Minami i Tadafumi Adschiri. "Thermal Dewetting Behavior of Polystyrene Composite Thin Films with Organic-Modified Inorganic Nanoparticles". Langmuir 30, nr 29 (14.07.2014): 8956–64. http://dx.doi.org/10.1021/la502009x.
Pełny tekst źródłaGao, Aiqin, Wenjing Xu, Yenisey Ponce de León, Yaocai Bai, Mingfu Gong, Kongliang Xie, Boris Hyle Park i Yadong Yin. "Controllable Fabrication of Au Nanocups by Confined-Space Thermal Dewetting for OCT Imaging". Advanced Materials 29, nr 26 (3.05.2017): 1701070. http://dx.doi.org/10.1002/adma.201701070.
Pełny tekst źródłaKondic, Lou, Alejandro G. González, Javier A. Diez, Jason D. Fowlkes i Philip Rack. "Liquid-State Dewetting of Pulsed-Laser-Heated Nanoscale Metal Films and Other Geometries". Annual Review of Fluid Mechanics 52, nr 1 (5.01.2020): 235–62. http://dx.doi.org/10.1146/annurev-fluid-010719-060340.
Pełny tekst źródłaScandurra, Antonino, Valentina Iacono, Stefano Boscarino, Silvia Scalese, Maria Grazia Grimaldi i Francesco Ruffino. "Model of Chronoamperometric Response towards Glucose Sensing by Arrays of Gold Nanostructures Obtained by Laser, Thermal and Wet Processes". Nanomaterials 13, nr 7 (24.03.2023): 1163. http://dx.doi.org/10.3390/nano13071163.
Pełny tekst źródłaMelekhov, Evgeny, Tatjana Penn, Tobias Weidauer, Valerius Abb, Martin Kammler i Alfred Lechner. "Tunable nanopillar array on a quartz-fiber tip for surface enhanced Raman scattering (SERS) detection". tm - Technisches Messen 89, nr 1 (16.12.2021): 70–81. http://dx.doi.org/10.1515/teme-2021-0093.
Pełny tekst źródła