Gotowa bibliografia na temat „Thermal bubble”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Thermal bubble”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Thermal bubble"

1

Liu, Bendong, Chenxu Ma, Jiahui Yang, Desheng Li, and Haibin Liu. "Study on the Heat Source Insulation of a Thermal Bubble-Driven Micropump with Induction Heating." Micromachines 12, no. 9 (2021): 1040. http://dx.doi.org/10.3390/mi12091040.

Pełny tekst źródła
Streszczenie:
Thermal bubble-driven micropumps have the advantages of high reliability, simple structure and simple fabrication process. However, the high temperature of the thermal bubble may damage some biological or chemical properties of the solution. In order to reduce the influence of the high temperature of the thermal bubbles on the pumped liquid, this paper proposes a kind of heat insulation micropump driven by thermal bubbles with induction heating. The thermal bubble and its chamber are designed on one side of the main pumping channel. The high temperature of the thermal bubble is insulated by the liquid in the heat insulation channel, which reduces the influence of the high temperature of the thermal bubble on the pumped liquid. Protypes of the new micropump with heat source insulation were fabricated and experiments were performed on them. The experiments showed that the temperature of the pumped liquid was less than 35 °C in the main pumping channel.
Style APA, Harvard, Vancouver, ISO itp.
2

Heller, R., R. Jacob, D. Schönberner, and M. Steffen. "Hot bubbles of planetary nebulae with hydrogen-deficient winds." Astronomy & Astrophysics 620 (December 2018): A98. http://dx.doi.org/10.1051/0004-6361/201832683.

Pełny tekst źródła
Streszczenie:
Context. The first high-resolution X-ray spectroscopy of a planetary nebula, BD +30° 3639, opened the possibility to study plasma conditions and chemical compositions of X-ray emitting “hot” bubbles of planetary nebulae in much greater detail than before. Aims. We investigate (i) how diagnostic line ratios are influenced by the bubble’s thermal structure and chemical profile, (ii) whether the chemical composition inside the bubble of BD +30° 3639 is consistent with the hydrogen-poor composition of the stellar photosphere and wind, and (iii) whether hydrogen-rich nebular matter has already been added to the bubble of BD +30° 3639 by evaporation. Methods. We applied an analytical, one-dimensional (1D) model for wind-blown bubbles with temperature and density profiles based on self-similar solutions including thermal conduction. We also constructed heat-conduction bubbles with a chemical stratification. The X-ray emission was computed using the well-documented CHIANTI code. These bubble models are used to re-analyse the high-resolution X-ray spectrum from the hot bubble of BD +30° 3639. Results. We found that our 1D heat-conducting bubble models reproduce the observed line ratios much better than plasmas with single electron temperatures. In particular, all the temperature- and abundance-sensitive line ratios are consistent with BD +30° 3639 X-ray observations for (i) an intervening column density of neutral hydrogen, NH = 0.20-0.10+0.05 × 1022cm−2, (ii) a characteristic bubble X-ray temperature of TX = 1.8 ± 0.1 MK together with (iii) a very high neon mass fraction of about 0.05, virtually as high as that of oxygen. For lower values of NH, we cannot exclude the possibility that the hot bubble of BD +30° 3639 contains a small amount of “evaporated” (or mixed) hydrogen-rich nebular matter. Given the possible range of NH, the fraction of evaporated hydrogen-rich matter cannot exceed 3% of the bubble mass. Conclusions. The diffuse X-ray emission from BD +30° 3639 can be well explained by models of wind-blown bubbles with thermal conduction and a chemical composition equal to that of the hydrogen-poor and carbon-, oxygen-, and neon-rich stellar surface.
Style APA, Harvard, Vancouver, ISO itp.
3

Chen, Min, Kun Peng Jiang, Da Wei Jiang, Dong Dong Chen, and Yan Fang Zhao. "Thermal Bubble Nucleation in a Nanochannel: An Experiment Investigation." Applied Mechanics and Materials 597 (July 2014): 7–12. http://dx.doi.org/10.4028/www.scientific.net/amm.597.7.

Pełny tekst źródła
Streszczenie:
We investigated the nanoscale thermal bubble nucleation based on the principle of Coulter counter. With micro-nanofabrication technologies, a device was designed and fabricated, and a detection platform was set up which was used to investigate the thermal bubble nucleation of aqueous solution confined in a nanochannel with a cross size of about 100 nm×100 nm. Results show that with the temperature of the solution confined in the nanochannel increasing, the current through the channel increases first and then decreases, and vanishes after a fluctuating period. It can be found that the generating thermal bubbles can hinder the current flowing through the nanochannel. In addition, the shrinking and expanding of thermal bubbles’ volume correspond to the increase and decrease of the current. Finally, the thermal bubbles block the nanochannel entirely. Through the experiment results, our device can be applied to investigate the complex behaviors of thermal bubble produced in aqueous solution confined in nanochannels, effectively.
Style APA, Harvard, Vancouver, ISO itp.
4

Hung, P. K., P. H. Kien, and H. V. Hue. "Tracer Diffusion Mechanism in Amorphous Solids." Journal of Metallurgy 2011 (December 27, 2011): 1–11. http://dx.doi.org/10.1155/2011/861373.

Pełny tekst źródła
Streszczenie:
Tracer diffusion in amorphous solid is studied by mean of nB-bubble statistic. The nB-bubble is defined as a group of atoms around a spherical void and large bubble that represents a structural defect which could be eliminated under thermal annealing. It was found that amorphous alloys such as CoxB100−x (x=90, 81.5 and 70) and Fe80P20 suffer from a large number of vacancy bubbles which function like diffusion vehicle. The concentration of vacancy bubble weakly depends on temperature, but essentially on the relaxation degree of considered sample. The diffusion coefficient estimated for proposed mechanism via vacancy bubbles is in a reasonable agreement with experiment for actual amorphous alloys. The relaxation effect for tracer diffusion in amorphous alloys is interpreted by the elimination of vacancy bubbles under thermal annealing.
Style APA, Harvard, Vancouver, ISO itp.
5

Narezo Guzman, Daniela, Tomasz Frączek, Christopher Reetz, Chao Sun, Detlef Lohse, and Guenter Ahlers. "Vapour-bubble nucleation and dynamics in turbulent Rayleigh–Bénard convection." Journal of Fluid Mechanics 795 (April 13, 2016): 60–95. http://dx.doi.org/10.1017/jfm.2016.178.

Pełny tekst źródła
Streszczenie:
Vapour bubbles nucleating at micro-cavities etched into the silicon bottom plate of a cylindrical Rayleigh–Bénard sample (diameter $D=8.8$ cm, aspect ratio ${\it\Gamma}\equiv D/L\simeq 1.00$ where $L$ is the sample height) were visualized from the top and from the side. A triangular array of cylindrical micro-cavities (with a diameter of $30~{\rm\mu}\text{m}$ and a depth of $100~{\rm\mu}\text{m}$) covered a circular centred area (diameter of 2.5 cm) of the bottom plate. Heat was applied to the sample only over this central area while cooling was over the entire top-plate area. Bubble sizes and frequencies of departure from the bottom plate are reported for a range of bottom-plate superheats $T_{b}-T_{on}$ ($T_{b}$ is the bottom-plate temperature, $T_{on}$ is the onset temperature of bubble nucleation) from 3 to 12 K for three different cavity separations. The difference $T_{b}-T_{t}\simeq 16$ K between $T_{b}$ and the top plate temperature $T_{t}$ was kept fixed while the mean temperature $T_{m}=(T_{b}+T_{t})/2$ was varied, leading to a small range of the Rayleigh number $Ra$ from $1.4\times 10^{10}$ to $2.0\times 10^{10}$. The time between bubble departures from a given cavity decreased exponentially with increasing superheat and was independent of cavity separation. The contribution of the bubble latent heat to the total enhancement of heat transferred due to bubble nucleation was found to increase with superheat, reaching up to 25 %. The bubbly flow was examined in greater detail for a superheat of 10 K and $Ra\simeq 1.9\times 10^{10}$. The condensation and/or dissolution rates of departed bubbles revealed two regimes: the initial rate was influenced by steep thermal gradients across the thermal boundary layer near the plate and was two orders of magnitude larger than the final condensation and/or dissolution rate that prevailed once the rising bubbles were in the colder bulk flow of nearly uniform temperature. The dynamics of thermal plumes was studied qualitatively in the presence and absence of nucleating bubbles. It was found that bubbles enhanced the plume velocity by a factor of four or so and drove a large-scale circulation (LSC). Nonetheless, even in the presence of bubbles the plumes and LSC had a characteristic velocity which was smaller by a factor of five or so than the bubble-rise velocity in the bulk. In the absence of bubbles there was strongly turbulent convection but no LSC, and plumes on average rose vertically.
Style APA, Harvard, Vancouver, ISO itp.
6

Tsai, Jr-Hung, and Liwei Lin. "Transient Thermal Bubble Formation on Polysilicon Micro-Resisters." Journal of Heat Transfer 124, no. 2 (2001): 375–82. http://dx.doi.org/10.1115/1.1445136.

Pełny tekst źródła
Streszczenie:
Transient bubble formation experiments are investigated on polysilicon micro-resisters having dimensions of 95 μm in length, 10 μm or 5 μm in width, and 0.5 μm in thickness. Micro resisters act as both resistive heating sources and temperature transducers simultaneously to measure the transient temperature responses beneath the thermal bubbles. The micro bubble nucleation processes can be classified into three groups depending on the levels of the input current. When the input current level is low, no bubble is nucleated. In the middle range of the input current, a single spherical bubble is nucleated with a waiting period up to 2 sec while the wall temperature can drop up to 8°C depending on the magnitude of the input current. After the formation of a thermal bubble, the resister temperature rises and reaches a steady state eventually. The bubble growth rate is found proportional to the square root of time that is similar to the heat diffusion controlled model as proposed in the macro scale boiling experiments. In the group of high input current, a single bubble is nucleated immediately after the current is applied. A first-order model is proposed to characterize the transient bubble nucleation behavior in the micro-scale and compared with experimental measurements.
Style APA, Harvard, Vancouver, ISO itp.
7

Lin, Liwei, A. P. Pisano, and V. P. Carey. "Thermal Bubble Formation on Polysilicon Micro Resistors." Journal of Heat Transfer 120, no. 3 (1998): 735–42. http://dx.doi.org/10.1115/1.2824343.

Pełny tekst źródła
Streszczenie:
Thermal bubble formation in the microscale is of importance for both scientific research and practical applications. A bubble generation system that creates individual, spherical vapor bubbles from 2 to 500 μm in diameter is presented. Line shape, polysilicon resistors with a typical size of 50 × 2 × 0.53 μm3 are fabricated by means of micromachining. They function as resistive heaters and generate thermal microbubbles in working liquids such as Fluorinert fluids (inert, dielectric fluids available from the 3M company), water, and methanol. Important experimental phenomena are reported, including Marangoni effects in the microscale; controllability of the size of microbubbles; and bubble nucleation hysteresis. A one-dimensional electrothermal model has been developed and simulated in order to investigate the bubble nucleation phenomena. It is concluded that homogeneous nucleation occurs on the microresistors according to the electrothermal model and experimental measurements.
Style APA, Harvard, Vancouver, ISO itp.
8

Zeng, Binglin, Kai Leong Chong, Yuliang Wang, et al. "Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces." Proceedings of the National Academy of Sciences 118, no. 23 (2021): e2103215118. http://dx.doi.org/10.1073/pnas.2103215118.

Pełny tekst źródła
Streszczenie:
The physicochemical hydrodynamics of bubbles and droplets out of equilibrium, in particular with phase transitions, display surprisingly rich and often counterintuitive phenomena. Here we experimentally and theoretically study the nucleation and early evolution of plasmonic bubbles in a binary liquid consisting of water and ethanol. Remarkably, the submillimeter plasmonic bubble is found to be periodically attracted to and repelled from the nanoparticle-decorated substrate, with frequencies of around a few kilohertz. We identify the competition between solutal and thermal Marangoni forces as the origin of the periodic bouncing. The former arises due to the selective vaporization of ethanol at the substrate’s side of the bubble, leading to a solutal Marangoni flow toward the hot substrate, which pushes the bubble away. The latter arises due to the temperature gradient across the bubble, leading to a thermal Marangoni flow away from the substrate, which sucks the bubble toward it. We study the dependence of the frequency of the bouncing phenomenon from the control parameters of the system, namely the ethanol fraction and the laser power for the plasmonic heating. Our findings can be generalized to boiling and electrolytically or catalytically generated bubbles in multicomponent liquids.
Style APA, Harvard, Vancouver, ISO itp.
9

Voglar, Jure. "Physical Model of a Single Bubble Growth during Nucleate Pool Boiling." Fluids 7, no. 3 (2022): 90. http://dx.doi.org/10.3390/fluids7030090.

Pełny tekst źródła
Streszczenie:
A simplified physical model of a single bubble growth during nucleate pool boiling was developed. The model was able to correlate the experimentally observed data of the bubble’s growth time and its radius evolution with the use of the appropriate input parameters. The calculated values of separated heat fluxes from the heater wall, thermal boundary layer, and to the bulk liquid gave us a new insight into the complex mechanisms of the nucleate pool boiling process. The thermal boundary layer was found to supply the majority of the heat to the growing bubble. The heat flux from the thermal boundary layer to the bubble was found to be close to the Zuber’s critical heat flux limit (890 kW/m2). This heat flux was substantially larger than the input heater wall heat flux of 50 kW/m2. The thermal boundary layer acts as a reservoir of energy to be released to the growing bubble, which is filled during the waiting time of the bubble growth cycle. Therefore, the thickness of the thermal boundary layer was found to have a major effect on the bubble’s growth time.
Style APA, Harvard, Vancouver, ISO itp.
10

Arai, S., T. Kanagawa, T. Ayukai, and T. Yatabe. "Nonlinear and dissipation effects of pressure waves in water flows containing translational bubbles with a drag force." Journal of Physics: Conference Series 2217, no. 1 (2022): 012021. http://dx.doi.org/10.1088/1742-6596/2217/1/012021.

Pełny tekst źródła
Streszczenie:
Abstract Weakly nonlinear (i.e., finite but small amplitude) propagation of plane progressive pressure waves in compressible water flows uniformly containing many spherical bubbles is theoretically studied. Drag force acting bubbles and translation of bubbles are newly considered by introducing in momentum conservation equations in a two fluid model and the bubble dynamics equation for volumetric oscillations, respectively. Although these assumptions are the same as our previous paper, in this study, the energy conservation equation for each bubble describing a thermal conduction inside bubble is introduced. By using the method of multiple scales, the Korteweg–de Vries–Burgers equation for low-frequency long wave was derived from the set of basic equations in the two-fluid model. As a result, the dissipation effect was described by two types of terms, i.e., one was the second-order partial derivative owing to the liquid compressibility and the other was the term without differentiation owing to the drag force and the thermal conduction. Finally, we clarified that the dissipation owing to the drag force was smaller than that owing to the thermal conduction.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii