Gotowa bibliografia na temat „Thermal bubble”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Thermal bubble”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Thermal bubble"
Liu, Bendong, Chenxu Ma, Jiahui Yang, Desheng Li i Haibin Liu. "Study on the Heat Source Insulation of a Thermal Bubble-Driven Micropump with Induction Heating". Micromachines 12, nr 9 (29.08.2021): 1040. http://dx.doi.org/10.3390/mi12091040.
Pełny tekst źródłaHeller, R., R. Jacob, D. Schönberner i M. Steffen. "Hot bubbles of planetary nebulae with hydrogen-deficient winds". Astronomy & Astrophysics 620 (grudzień 2018): A98. http://dx.doi.org/10.1051/0004-6361/201832683.
Pełny tekst źródłaChen, Min, Kun Peng Jiang, Da Wei Jiang, Dong Dong Chen i Yan Fang Zhao. "Thermal Bubble Nucleation in a Nanochannel: An Experiment Investigation". Applied Mechanics and Materials 597 (lipiec 2014): 7–12. http://dx.doi.org/10.4028/www.scientific.net/amm.597.7.
Pełny tekst źródłaHung, P. K., P. H. Kien i H. V. Hue. "Tracer Diffusion Mechanism in Amorphous Solids". Journal of Metallurgy 2011 (27.12.2011): 1–11. http://dx.doi.org/10.1155/2011/861373.
Pełny tekst źródłaNarezo Guzman, Daniela, Tomasz Frączek, Christopher Reetz, Chao Sun, Detlef Lohse i Guenter Ahlers. "Vapour-bubble nucleation and dynamics in turbulent Rayleigh–Bénard convection". Journal of Fluid Mechanics 795 (13.04.2016): 60–95. http://dx.doi.org/10.1017/jfm.2016.178.
Pełny tekst źródłaTsai, Jr-Hung, i Liwei Lin. "Transient Thermal Bubble Formation on Polysilicon Micro-Resisters". Journal of Heat Transfer 124, nr 2 (18.10.2001): 375–82. http://dx.doi.org/10.1115/1.1445136.
Pełny tekst źródłaLin, Liwei, A. P. Pisano i V. P. Carey. "Thermal Bubble Formation on Polysilicon Micro Resistors". Journal of Heat Transfer 120, nr 3 (1.08.1998): 735–42. http://dx.doi.org/10.1115/1.2824343.
Pełny tekst źródłaZeng, Binglin, Kai Leong Chong, Yuliang Wang, Christian Diddens, Xiaolai Li, Marvin Detert, Harold J. W. Zandvliet i Detlef Lohse. "Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces". Proceedings of the National Academy of Sciences 118, nr 23 (4.06.2021): e2103215118. http://dx.doi.org/10.1073/pnas.2103215118.
Pełny tekst źródłaVoglar, Jure. "Physical Model of a Single Bubble Growth during Nucleate Pool Boiling". Fluids 7, nr 3 (27.02.2022): 90. http://dx.doi.org/10.3390/fluids7030090.
Pełny tekst źródłaArai, S., T. Kanagawa, T. Ayukai i T. Yatabe. "Nonlinear and dissipation effects of pressure waves in water flows containing translational bubbles with a drag force". Journal of Physics: Conference Series 2217, nr 1 (1.04.2022): 012021. http://dx.doi.org/10.1088/1742-6596/2217/1/012021.
Pełny tekst źródłaRozprawy doktorskie na temat "Thermal bubble"
Wang, Ping. "Thermal bubble behaviour in liquid nitrogen under electric fields". Thesis, University of Southampton, 2008. https://eprints.soton.ac.uk/64874/.
Pełny tekst źródłaHuang, Ye. "The behaviour of coal-fired pressurized fluidised bed combustion systems". Thesis, University of Ulster, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284834.
Pełny tekst źródłaChigusa, S., H. Maeda, Y. Taniguchi, N. Hayakawa i H. Okubo. "Insulation performance of pressurized liquid helium under quench-induced thermal bubble disturbance for superconducting power apparatus". IEEE, 1999. http://hdl.handle.net/2237/6753.
Pełny tekst źródłaBenage, Mary Catherine. "The thermal evolution and dynamics of pyroclasts and pyroclastic density currents". Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53962.
Pełny tekst źródłaCowley, Adam M. "Hydrodynamic and Thermal Effects of Sub-critical Heating on Superhydrophobic Surfaces and Microchannels". BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/6572.
Pełny tekst źródłaSchmack, Mario. "A Holistic Sustainable Approach to Small-Scale Water Desalination in Remote Regions: Development of a thermal desalination method based on vapour transfer processes in water-filled bubble columns". Thesis, Schmack, Mario (2015) A Holistic Sustainable Approach to Small-Scale Water Desalination in Remote Regions: Development of a thermal desalination method based on vapour transfer processes in water-filled bubble columns. PhD thesis, Murdoch University, 2015. https://researchrepository.murdoch.edu.au/id/eprint/29961/.
Pełny tekst źródłaNakath, Richard. "Sieden in Anwesenheit von Borverbindungen in Leichtwasserreaktoren". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-154457.
Pełny tekst źródłaCalzada, Eduard. "Measurement of the thermal performance of a Borehole Heat Exchanger while injecting air bubbles in the groundwater". Thesis, KTH, Tillämpad termodynamik och kylteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-100152.
Pełny tekst źródłaŠot, Petr. "Ověření tepelně-izolační vlastnosti termoreflexních fóliových izolací". Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2014. http://www.nusl.cz/ntk/nusl-226729.
Pełny tekst źródłaHin, Sebastian [Verfasser], i Roland [Akademischer Betreuer] Zengerle. "Reduction of system complexity in centrifugal microfluidics by magnetophoresis at continuous rotation and thermo-pneumatic bubble mixing". Freiburg : Universität, 2020. http://d-nb.info/1222908573/34.
Pełny tekst źródłaKsiążki na temat "Thermal bubble"
Balasubramaniam, R. Thermocapillary Bubble Migration: Thermal Boundary Layers for Large Marangoni Numbers. [Cleveland, Ohio]: National Aeronautics and Space Administration, 1987.
Znajdź pełny tekst źródła1947-, Subramanian R. Shankar, i United States. National Aeronautics and Space Administration., red. Thermocapillary bubble migration: Thermal boundary layers for large Marangoni numbers. [Washington, D.C: National Aeronautics and Space Administration, 1997.
Znajdź pełny tekst źródłaAvomo, Javier Clemente Engonga. Future Science : Graphene Bubble Vehicles Manufactured by Thermal Vibration Nanostructures: Future Air Travel. Independently Published, 2021.
Znajdź pełny tekst źródłaCzęści książek na temat "Thermal bubble"
Gong, Lanxin, Changhong Peng i Zhenze Zhang. "Study on Coupling Effect and Dynamic Behavior of Double Bubbles Rising Process". W Springer Proceedings in Physics, 973–84. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_82.
Pełny tekst źródłaBaddour, R. E. "Thermal-Saline Bubble Plumes". W Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes, 117–29. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0918-5_7.
Pełny tekst źródłaTsai, Jr-Hung, i Liwei Lin. "Thermal Bubble Powered Microfluidic Mixer with Gas Bubble Filter". W Transducers ’01 Eurosensors XV, 938–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59497-7_222.
Pełny tekst źródłaPontes, P., R. Cautela, E. Teodori, A. S. Moita, A. Georgoulas i António L. N. Moreira. "Bubble Dynamics and Heat Transfer on Biphilic Surfaces". W Advances in Heat Transfer and Thermal Engineering, 93–97. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4765-6_17.
Pełny tekst źródłaAlhendal, Mohammad, i Yousuf Alhendal. "Numerical Study of the Impacts of Forced Vibration on Thermocapillary Bubble Migration". W Advances in Heat Transfer and Thermal Engineering, 427–32. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4765-6_73.
Pełny tekst źródłaKwak, Ho-Young, i Yoon-Pyo Lee. "Shock and Thermal Waves Emanating from a Sonoluminescing Gas Bubble". W Shock Focussing Effect in Medical Science and Sonoluminescence, 45–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05161-0_3.
Pełny tekst źródłaGao, Hongtao, Xiupeng Ji, Jiaju Hong, Yuchao Song i Yuying Yan. "Multi-bubble Coalescence Simulations with Large Density Ratio Using Improved Lattice Boltzmann Method". W Advances in Heat Transfer and Thermal Engineering, 361–75. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4765-6_64.
Pełny tekst źródłaPranoto, I., K. C. Leong, A. A. Rofiq, H. M. Arroisi i M. A. Rahman. "Study on the Pool Boiling Bubble Departure Diameter and Frequency from Porous Graphite Foam Structures". W Advances in Heat Transfer and Thermal Engineering, 217–23. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4765-6_40.
Pełny tekst źródłaAlhendal, Fatima, i Yousuf Alhendal. "Numerical Study of the Impacts of Forced Vibration on Thermocapillary Bubble Migration in a Rotating Cylinder". W Advances in Heat Transfer and Thermal Engineering, 349–54. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4765-6_62.
Pełny tekst źródłaVoulgaropoulos, Victor, Gustavo M. Aguiar, Matteo Bucci i Christos N. Markides. "Simultaneous Laser- and Infrared-Based Measurements of the Life Cycle of a Vapour Bubble During Pool Boiling". W Advances in Heat Transfer and Thermal Engineering, 169–73. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4765-6_31.
Pełny tekst źródłaStreszczenia konferencji na temat "Thermal bubble"
Hosoda, Shogo, Ryosuke Sakata, Kosuke Hayashi i Akio Tomiyama. "Mass Transfer From a Bubble in a Vertical Pipe". W ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44089.
Pełny tekst źródłaUeno, Ichiro, Ryota Hosoya i Chungpyo Hong. "Condensation/Collapse of Vapor Bubble Injected to Subcooled Pool". W ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44595.
Pełny tekst źródłaNabika, Ryo, i Mitsuhiro Matsumoto. "MD-CFD Hybrid Simulation for Microbubble Dynamics". W ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44397.
Pełny tekst źródłaWang, Haojie, Xipeng Lin i David M. Christopher. "Nucleate Boiling Bubble Dynamics in a PDMS Microchannel With a Single Nucleation Site". W ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44336.
Pełny tekst źródłaWen, Wang, i Zhuan Rui. "Bubble behavior in microchannel with saturated and subcooled boiling". W 2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2015. http://dx.doi.org/10.1109/semi-therm.2015.7100175.
Pełny tekst źródłaQu, Xiaopeng, i Huihe Qiu. "Acoustic Driven Micro Thermal Bubble Dynamics in a Microchannel". W ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18451.
Pełny tekst źródłaIgnacio da Silva, Isabela, Bruno de Andrade, Leonardo Manetti, Jeferson Diehl de Oliveira i Elaine Maria Cardoso. "SATURATION BOILING OF HFE-7100 ON COPPER SURFACES: BUBBLE DEPARTURE DIAMETER AND BUBBLE FREQUENCY". W 18th Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2020. http://dx.doi.org/10.26678/abcm.encit2020.cit20-0204.
Pełny tekst źródłaAlnaimat, Fadi, Omar Alhammadi i Bobby Mathew. "Condensation Heat Transfer Model: A Comparison Study of Condensation Rate Between a Single Bubble and Multiple Rising Bubbles". W ASME 2021 Heat Transfer Summer Conference collocated with the ASME 2021 15th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/ht2021-63593.
Pełny tekst źródłaTsou, Chingfu, i Chenghan Huang. "Thermal Bubble Microfluidic Gate Based on SOI Wafer". W ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18365.
Pełny tekst źródłaFigueroa, Marcelino, D. Keith Hollingsworth i Larry C. Witte. "Enhancement of Heat Transfer Behind Sliding Bubbles". W ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32400.
Pełny tekst źródłaRaporty organizacyjne na temat "Thermal bubble"
Buechler, Cynthia Eileen. Argonne Bubble Experiment Thermal Model Development. Office of Scientific and Technical Information (OSTI), grudzień 2015. http://dx.doi.org/10.2172/1228070.
Pełny tekst źródłaBuechler, Cynthia Eileen. Argonne Bubble Experiment Thermal Model Development II. Office of Scientific and Technical Information (OSTI), lipiec 2016. http://dx.doi.org/10.2172/1260366.
Pełny tekst źródłaBuechler, Cynthia Eileen. Argonne Bubble Experiment Thermal Model Development III. Office of Scientific and Technical Information (OSTI), styczeń 2018. http://dx.doi.org/10.2172/1417150.
Pełny tekst źródłaChemerisov, Sergey, R. Gromov, Vakhtang Makarashvili, Thad Heltemes, Zaijing Sun, Kent E. Wardle, James Bailey, Dominique Stepinski, James Jerden i George F. Vandegrift. Experimental Results for Direct Electron Irradiation of a Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies. Office of Scientific and Technical Information (OSTI), styczeń 2015. http://dx.doi.org/10.2172/1234216.
Pełny tekst źródłaChemerisov, Sergey, Roman Gromov, Vakho Makarashvili, Thad Heltemes, Zaijing Sun, Kent E. Wardle, James Bailey, Kevin Quigley, Dominique Stepinski i George Vandegrift. Design and Construction of Experiment for Direct Electron Irradiation of Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies. Office of Scientific and Technical Information (OSTI), październik 2014. http://dx.doi.org/10.2172/1224953.
Pełny tekst źródłaLi, Yulan, Shenyang Y. Hu, Robert Montgomery, Fei Gao, Xin Sun, Michael Tonks, Bullent Biner i in. Mesoscale Benchmark Demonstration Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing. Office of Scientific and Technical Information (OSTI), kwiecień 2012. http://dx.doi.org/10.2172/1049667.
Pełny tekst źródła