Gotowa bibliografia na temat „Thermal Arrest Memory Effect”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Thermal Arrest Memory Effect”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Thermal Arrest Memory Effect"
Madangopal, K., S. Banerjee i S. Lele. "Thermal arrest memory effect". Acta Metallurgica et Materialia 42, nr 6 (czerwiec 1994): 1875–85. http://dx.doi.org/10.1016/0956-7151(94)90012-4.
Pełny tekst źródłaRudajevova, A. "Thermal Arrest Memory Effect in Ni-Mn-Ga Alloys". Advances in Materials Science and Engineering 2008 (2008): 1–5. http://dx.doi.org/10.1155/2008/659145.
Pełny tekst źródłaKrishnan, Madangopal. "New observations on the thermal arrest memory effect in Ni–Ti alloys". Scripta Materialia 53, nr 7 (październik 2005): 875–79. http://dx.doi.org/10.1016/j.scriptamat.2005.05.031.
Pełny tekst źródłaWada, Kiyohide, i Yong Liu. "Two-Way Memory Effect in NiTi Shape Memory Alloys". Advances in Science and Technology 59 (wrzesień 2008): 77–85. http://dx.doi.org/10.4028/www.scientific.net/ast.59.77.
Pełny tekst źródłaJiang, J., L. S. Cui, Y. J. Zheng, D. Q. Jiang, Z. Y. Liu i K. Zhao. "Negative thermal expansion arrest point memory effect in TiNi shape memory alloy and NbTi/TiNi composite". Materials Science and Engineering: A 549 (lipiec 2012): 114–17. http://dx.doi.org/10.1016/j.msea.2012.04.013.
Pełny tekst źródłaMeng, Qinglin, Hong Yang, Yinong Liu, Tae-hyun Nam i F. Chen. "Thermal arrest analysis of thermoelastic martensitic transformations in shape memory alloys". Journal of Materials Research 26, nr 10 (19.05.2011): 1243–52. http://dx.doi.org/10.1557/jmr.2011.54.
Pełny tekst źródłaArizmendi, C. M., i Fereydoon Family. "Memory correlation effect on thermal ratchets". Physica A: Statistical Mechanics and its Applications 251, nr 3-4 (marzec 1998): 368–81. http://dx.doi.org/10.1016/s0378-4371(97)00662-6.
Pełny tekst źródłaGorina, I. I., S. S. Yakovenko i M. Yu Baranovich. "New Thermal Memory Effect in CLC". Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 192, nr 1 (1.01.1990): 263–71. http://dx.doi.org/10.1080/00268949008035639.
Pełny tekst źródłaMinakawa, Kazunari, Neisei Hayashi, Yosuke Mizuno i Kentaro Nakamura. "Thermal Memory Effect in Polymer Optical Fibers". IEEE Photonics Technology Letters 27, nr 13 (1.07.2015): 1394–97. http://dx.doi.org/10.1109/lpt.2015.2421950.
Pełny tekst źródłaDe, K., S. Majumdar i S. Giri. "Memory effect and inverse thermal hysteresis in La0.87Mn0.98Fe0.02Ox". Journal of Applied Physics 101, nr 10 (15.05.2007): 103909. http://dx.doi.org/10.1063/1.2714645.
Pełny tekst źródłaRozprawy doktorskie na temat "Thermal Arrest Memory Effect"
Jardine, A. P. "Shape memory effect thermodynamics and thermal efficiencies of NiTi". Thesis, University of Bristol, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381385.
Pełny tekst źródłaKalnitsky, Alexander Carleton University Dissertation Engineering Electrical. "Memory effect and enhanced conductivity in thermal Si0 [subscript 2] implanted with Si". Ottawa, 1989.
Znajdź pełny tekst źródłaDai, Wenhua. "Large signal electro-thermal LDMOSFET modeling and the thermal memory effects in RF power amplifiers". Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1078935135.
Pełny tekst źródłaTitle from first page of PDF file. Document formatted into pages; contains xix, 156 p.; also includes graphics (some col.). Includes bibliographical references (p. 152-156).
Amalraj, Julian Joyce. "Effect of variable material properties on purely thermal phase transformations in shape memory alloy wires, modeling and experiments". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0020/MQ47001.pdf.
Pełny tekst źródłaKrishnan, Vinu Bala. "DESIGN, FABRICATION AND TESTING OF A SHAPE MEMORY ALLOY BASED CRYOGENIC THERMAL CONDUCTION SWITCH". Master's thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4404.
Pełny tekst źródłaM.S.
Department of Mechanical, Materials and Aerospace Engineering
Engineering and Computer Science
Mechanical, Materials and Aerospace Engineering
Terzak, John Charles. "Modeling of Microvascular Shape Memory Composites". Youngstown State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1389719238.
Pełny tekst źródłaEsham, Kathryn V. "The Effect of Nanoscale Precipitates on the Templating of Martensite Twin Microstructure in NiTiHf High Temperature Shape Memory Alloys". The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1494251602171757.
Pełny tekst źródłaNiraula, Dipesh. "Physics and applications of conductive filaments in electronic structures: from metal whiskers to solid state memory". University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1561471348406944.
Pełny tekst źródłaDufour, Hugo. "Etude des effets multicaloriques induits lors de la transformation de phase structurale dans les composés de type Heusler". Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY024.
Pełny tekst źródłaThis manuscript is devoted to the study of the multicaloric properties, and in particular magnetocaloric and elastocaloric properties possibly coupled between them, of Ni-Mn-X type Heusler alloys (X= In, Co-In,...). This preliminary research can quickly lead to the development of new cooling devices or new functionalities, hence the interest shown by certain players in the socio-economic world. To achieve this, we studied the structural and magnetic transformation that occurs in temperature between the high-temperature cubic phase known as « austenite » and the low-temperature phase known as « martensite ». The application of a magnetic field or a uniaxial strain shifts the transformation temperatures respectively towards low temperatures or high temperatures and also makes it possible to induce the transformation from one phase to the other. The multicaloric properties result from the near-transformation-temperature-entropy-variation due to the application of those external perturbations.A particular effort has been made to determine the non-consensual martensitic structure. However, martensite is responsible for shape memory properties and a knowledge of the structure led to the understanding of the martensitic transformation at the basis of elastocaloric properties.The originality of the study wad both on the study of elastocaloric properties and on a combination of theoretical and experimental approaches. Indeed, neutron diffraction studies have led to a better understanding of the crystallographic structures. They were coupled with experimental measurements to determine the entropy variations. Those measurements were based on the implementation of versatile measurement systems generally combining the application of uniaxial strains, temperature scanning (77K - 400K), fine temperature or transport measurements and the possible application of a magnetic field. This experimental versatility has made it possible to fully understand the elastocaloric effect of shape memory ferromagnetic alloys
Guidetti, Giulia. "Cellulose photonics : designing functionality and optical appearance of natural materials". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277918.
Pełny tekst źródłaKsiążki na temat "Thermal Arrest Memory Effect"
National Aeronautics and Space Administration (NASA) Staff. Low Temperature Creep of Hot-Extruded near-Stoichiometric Niti Shape Memory Alloy. Part 2; Effect of Thermal Cycling. Independently Published, 2019.
Znajdź pełny tekst źródłaCzęści książek na temat "Thermal Arrest Memory Effect"
Făciu, Cristian. "Pseudoelasticity and Shape Memory Effect: A Maxwellian Rate-Type Approach". W Encyclopedia of Thermal Stresses, 4064–76. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_891.
Pełny tekst źródłaPan, Fengqun, Xiangjun Jiang, Chong Ni i Jingli Du. "Experimental Study on Thermal Ratcheting Effect of NiTi Shape Memory Alloy". W Lecture Notes in Electrical Engineering, 326–33. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9441-7_33.
Pełny tekst źródłaXu, Liu-Jun, i Ji-Ping Huang. "Theory for Thermal Bi/Multistability: Nonlinear Thermal Conductivity". W Transformation Thermotics and Extended Theories, 247–62. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5908-0_18.
Pełny tekst źródłaNam, Nguyen Duong, Vu Anh Tuan i Pham Mai Khanh. "Influence of Thermal-Mechanical Process on the Shape Memory Effect of CuAl9Fe4Ni2 Alloys". W Proceedings of the 2nd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020), 78–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69610-8_10.
Pełny tekst źródłaSakon, T., H. Nagashio, K. Sasaki, S. Susuga, D. Numakura, M. Abe, K. Endo, S. Yamashita, H. Nojiri i T. Kanomat. "Thermal Strain and Magnetization Studies of the Ferromagnetic Heusler Shape Memory Alloys Ni2MnGa and the Effect of Selective Substitution in 3d Elements on the Structural and Magnetic Phase". W Shape Memory Alloys - Processing, Characterization and Applications. InTech, 2013. http://dx.doi.org/10.5772/47808.
Pełny tekst źródłaShahinpoor, Mohsen. "Review of Magnetic Shape Memory Smart Materials". W Fundamentals of Smart Materials, 151–59. The Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/bk9781782626459-00151.
Pełny tekst źródłaShahinpoor, Mohsen. "Review of Shape Memory Alloys (SMAs) as Smart Materials". W Fundamentals of Smart Materials, 136–50. The Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/bk9781782626459-00136.
Pełny tekst źródłaShahinpoor, Mohsen. "Shape Memory Polymers (SMPs) as Smart Materials". W Fundamentals of Smart Materials, 160–69. The Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/bk9781782626459-00160.
Pełny tekst źródłaR. Knick, Cory. "Fabrication and Characterization of Nanoscale Shape Memory Alloy MEMS Actuators". W Advanced Functional Materials. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92762.
Pełny tekst źródłaAbdelsabour Fahmy, Mohamed. "A Novel MDD-Based BEM Model for Transient 3T Nonlinear Thermal Stresses in FGA Smart Structures". W Advanced Functional Materials. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92829.
Pełny tekst źródłaStreszczenia konferencji na temat "Thermal Arrest Memory Effect"
Yuzer, A. H., S. A. Bassam, F. M. Ghannouchi i S. Demir. "Memory polynomial with shaped memory delay profile and modeling the thermal memory effect". W 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS). IEEE, 2013. http://dx.doi.org/10.1109/icecs.2013.6815482.
Pełny tekst źródłada Rocha Souto, Cicero, Rosiane Agapito da Silva, Alexandre Cesar de Castro, Alexsandro Jose Virginio dos Santos i Rebeca Casimiro de Souza. "Thermal cycling effect on a shape memory and piezoelectric heterostructure". W 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2014. http://dx.doi.org/10.1109/i2mtc.2014.6860759.
Pełny tekst źródłaLee, Suk-hui, Ki-Jin Kim, Sanghoon Park, K. H. Ahn i Sung-il Bang. "Thermal memory effect modeling and compensation for GaN Doherty amplifier". W 2014 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2014. http://dx.doi.org/10.1109/ictc.2014.6983320.
Pełny tekst źródłaMinakawa, Kazunari, Neisei Hayashi, Yosuke Mizuno i Kentaro Nakamura. "Experimental study on thermal memory effect in plastic optical fibers". W 2015 Opto-Electronics and Communications Conference (OECC). IEEE, 2015. http://dx.doi.org/10.1109/oecc.2015.7340147.
Pełny tekst źródłaRodrigez, P., i G. Guénin. "Thermal and Thermomechanical Stability of Cu-Al-Ni Shape Memory Effect". W ESOMAT 1989 - Ist European Symposium on Martensitic Transformations in Science and Technology. Les Ulis, France: EDP Sciences, 1989. http://dx.doi.org/10.1051/esomat/198903004.
Pełny tekst źródłaZhe Chen, Peng Huang, Haitong Li, Bing Chen, Yi Hou, Feifei Zhang, Bin Gao, Lifeng Liu, Xiaoyan Liu i Jinfeng Kang. "Optimization of uniformity in resistive switching memory by reducing thermal effect". W 2014 IEEE 12th International Conference on Solid -State and Integrated Circuit Technology (ICSICT). IEEE, 2014. http://dx.doi.org/10.1109/icsict.2014.7021321.
Pełny tekst źródłaKamaya, Masayuki. "Crack Growth Under Thermal Fatigue Loading (Effect of Stress Gradient and Relaxation)". W ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77547.
Pełny tekst źródłaYukio Takahashi, Ryo Ishikawa i Kazuhiko Honjo. "Precise modeling of thermal memory effect for power amplifier using multi-stage thermal RC-ladder network". W 2006 Asia-Pacific Microwave Conference. IEEE, 2006. http://dx.doi.org/10.1109/apmc.2006.4429424.
Pełny tekst źródłaDeak, J. G., A. V. Pohm i J. M. Daughton. "Effect of Memory Element Resistance-Area-Product and Thermal Environment on Writing of Magneto-Thermal MRAM". W INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.376119.
Pełny tekst źródłaNavarro y de Sosa, I., A. Bucht, T. Junker, K. Pagel i W. G. Drossel. "Thermo-mechanical self-adaptive ball screw drive using thermal shape memory effect". W SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, redaktorzy Nakhiah C. Goulbourne i Hani E. Naguib. SPIE, 2013. http://dx.doi.org/10.1117/12.2009599.
Pełny tekst źródłaRaporty organizacyjne na temat "Thermal Arrest Memory Effect"
Yahav, Shlomo, John Brake i Noam Meiri. Development of Strategic Pre-Natal Cycling Thermal Treatments to Improve Livability and Productivity of Heavy Broilers. United States Department of Agriculture, grudzień 2013. http://dx.doi.org/10.32747/2013.7593395.bard.
Pełny tekst źródłaMeiri, Noam, Michael D. Denbow i Cynthia J. Denbow. Epigenetic Adaptation: The Regulatory Mechanisms of Hypothalamic Plasticity that Determine Stress-Response Set Point. United States Department of Agriculture, listopad 2013. http://dx.doi.org/10.32747/2013.7593396.bard.
Pełny tekst źródła