Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Thermal analysis.

Artykuły w czasopismach na temat „Thermal analysis”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Thermal analysis”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

MUKADDES, A. M. M., Masao OGINO, Hiroshi KANAYAMA i Akio MIYOSHI. "Non-Steady Thermal Analysis Using ADVENTURE_Thermal". Proceedings of The Computational Mechanics Conference 2004.17 (2004): 829–30. http://dx.doi.org/10.1299/jsmecmd.2004.17.829.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Price, Duncan M., Michael Reading, Azzedine Hammiche i Hubert M. Pollock. "Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis". International Journal of Pharmaceutics 192, nr 1 (grudzień 1999): 85–96. http://dx.doi.org/10.1016/s0378-5173(99)00275-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

S, Manavalan, Hulendra Kumar, Bharath Kumar, Raviteja M i Israfil Ali. "Structural and Thermal Analysis of Disc Plate". International Journal of Psychosocial Rehabilitation 23, nr 4 (20.07.2019): 408–18. http://dx.doi.org/10.37200/ijpr/v23i4/pr190200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

MEDVEĎ, Dušan, i Ján PRESADA. "THERMAL ANALYSIS OF HIGH-CURRENT ELECTRIC CONTACT". Acta Electrotechnica et Informatica 21, nr 3 (20.12.2021): 38–42. http://dx.doi.org/10.15546/aeei-2021-0018.

Pełny tekst źródła
Streszczenie:
This paper deals with mathematical modelling of the temperature distribution in the vicinity of a direct electrical high-current contact under the action of a nominal current of 3000 A. High-current electrical contacts belong among the elements by which a large number of electrical devices are connected. They play an important role especially in the transmission and distribution system, where they have to withstand adverse weather conditions that have a significant impact on their degradation.
Style APA, Harvard, Vancouver, ISO itp.
5

Vigneshwaran, V., V. K. Aravindraman i K. Venkatachalam V. Raveendran. "Thermal Transport Properties Analysis of MWCNT-RT21Nanofluids". International Journal of Trend in Scientific Research and Development Volume-3, Issue-2 (28.02.2019): 641–43. http://dx.doi.org/10.31142/ijtsrd21435.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

SUGIURA, Shigeki, i Rieko KANAZAWA. "Thermal Analysis". Journal of the Japan Society of Colour Material 64, nr 3 (1991): 178–90. http://dx.doi.org/10.4011/shikizai1937.64.178.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

TODOKI, Minoru. "Thermal Analysis". Journal of the Japan Society of Colour Material 79, nr 7 (2006): 296–311. http://dx.doi.org/10.4011/shikizai1937.79.296.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Vyazovkin, Sergey. "Thermal Analysis". Analytical Chemistry 82, nr 12 (15.06.2010): 4936–49. http://dx.doi.org/10.1021/ac100859s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Vyazovkin, Sergey. "Thermal Analysis". Analytical Chemistry 76, nr 12 (czerwiec 2004): 3299–312. http://dx.doi.org/10.1021/ac040054h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Dollimore, David. "Thermal analysis". Analytical Chemistry 60, nr 12 (15.06.1988): 274–79. http://dx.doi.org/10.1021/ac00163a019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Dollimore, D., i P. Phang. "Thermal Analysis". Analytical Chemistry 72, nr 12 (czerwiec 2000): 27–36. http://dx.doi.org/10.1021/a1000003j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Dollimore, D. "Thermal Analysis". Analytical Chemistry 68, nr 12 (styczeń 1996): 63–72. http://dx.doi.org/10.1021/a1960006p.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Dollimore, D., i S. Lerdkanchanaporn. "Thermal Analysis". Analytical Chemistry 70, nr 12 (czerwiec 1998): 27–36. http://dx.doi.org/10.1021/a19800038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Vyazovkin, Sergey. "Thermal Analysis". Analytical Chemistry 78, nr 12 (czerwiec 2006): 3875–86. http://dx.doi.org/10.1021/ac0605546.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Dollimore, D. "Thermal analysis". Analytical Chemistry 64, nr 12 (15.06.1992): 147–53. http://dx.doi.org/10.1021/ac00036a008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Vyazovkin, Sergey. "Thermal Analysis". Analytical Chemistry 74, nr 12 (czerwiec 2002): 2749–62. http://dx.doi.org/10.1021/ac020219r.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Dollimore, D. "Thermal analysis". Analytical Chemistry 62, nr 12 (15.06.1990): 44–50. http://dx.doi.org/10.1021/ac00211a004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Dollimore, D. "Thermal Analysis". Analytical Chemistry 66, nr 12 (czerwiec 1994): 17–25. http://dx.doi.org/10.1021/ac00084a002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Wendlandt, W. W. "Thermal analysis". Analytical Chemistry 58, nr 5 (kwiecień 1986): 1–6. http://dx.doi.org/10.1021/ac00296a001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Živkovič, Ž. "Thermal analysis". Thermochimica Acta 97 (styczeń 1986): 393–94. http://dx.doi.org/10.1016/0040-6031(86)87044-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Vyazovkin, Sergey. "Thermal Analysis". Analytical Chemistry 80, nr 12 (czerwiec 2008): 4301–16. http://dx.doi.org/10.1021/ac8005999.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Dollimore, David. "Thermal analysis". Thermochimica Acta 188, nr 1 (październik 1991): 179–80. http://dx.doi.org/10.1016/0040-6031(91)80217-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Boddington, T., Feng Hongtu, P. G. Laye, M. Nawaz i Dorothy C. Nelson. "Thermal runaway by thermal analysis". Thermochimica Acta 170 (listopad 1990): 81–87. http://dx.doi.org/10.1016/0040-6031(90)80526-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Patel, Rankit, i Bindu Pillai. "Thermal Modeling and Analysis of Friction Stir Welding". Indian Journal of Applied Research 1, nr 9 (1.10.2011): 68–70. http://dx.doi.org/10.15373/2249555x/jun2012/27.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Marushchak, Uliana, i Oksana Pozniak. "ANALYSIS OF WALL MATERIALS ACCORDING TO THERMAL PARAMETERS". Theory and Building Practice 2022, nr 1 (20.06.2022): 63–70. http://dx.doi.org/10.23939/jtbp2022.01.063.

Pełny tekst źródła
Streszczenie:
Based on the analysis of energy consumption and carbon dioxide emissions of the construction industry, it is stated that the reduction of energy consumption in Ukraine is achieved through termomodernization of the existing building stock and build new buildings, which meet energy efficiency requirements. Comparison of thermal parameters of different wall materials are given. It is shown that multilayer wall constructions must be used to ensure the necessary indicators of external walls of energy efficient buildings. The use of effective wall materials allows to ensure compliance with the given temperature difference to regulatory documents and reducing of heat transfer by transmission during the heating season, solar heat gains during cooling season.
Style APA, Harvard, Vancouver, ISO itp.
26

Jagadeesh, Chintu, i K. Srinivasa Rao. "Analysis of Thermal Criteria on Cryogenic Pressure Vessel". International Journal of Trend in Scientific Research and Development Volume-3, Issue-2 (28.02.2019): 205–8. http://dx.doi.org/10.31142/ijtsrd20307.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Patterson, Eann, Richard Greene, Manuel Heredia i Jon Lesniak. "OS03W0354 Hybrid thermal methods in experimental stress analysis". Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2003.2 (2003): _OS03W0354. http://dx.doi.org/10.1299/jsmeatem.2003.2._os03w0354.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Barone, Gianluca, Selanna Roccella, Emanuela Martelli i Eliseo Visca. "DTT Thermal Shield: Preliminary thermal analysis". Fusion Engineering and Design 158 (wrzesień 2020): 111725. http://dx.doi.org/10.1016/j.fusengdes.2020.111725.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Chiu, Jen. "Thermal analysis of high polymers: Differential thermal analysis and dynamic electrothermal analysis". Journal of Polymer Science Part C: Polymer Symposia 8, nr 1 (7.03.2007): 27–40. http://dx.doi.org/10.1002/polc.5070080104.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Saidpatil, Prof Vishal, i Prof S. M. Jadhav Prof. S. M. Jadhav. "Thermal Analysis of Low Prssure Boiler Drum (Pressure Vessel) Using Finite Element Analysis". Indian Journal of Applied Research 3, nr 9 (1.10.2011): 248–50. http://dx.doi.org/10.15373/2249555x/sept2013/74.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Logachevsky, Ivan A. "THERMAL IMAGE ANALYSIS". SOFT MEASUREMENTS AND COMPUTING 8, nr 57 (2022): 18–30. http://dx.doi.org/10.36871/2618-9976.2022.08.002.

Pełny tekst źródła
Streszczenie:
The equipment of thermal stations and heating networks, which is subject to corrosion and is often far from new, loses its original characteristics over time. Such processes, potentially leading to heat losses and coolant leaks, can lead to significant financial and environmental consequences. Infrared thermography is one of the effective problemsolving methods that helps to detect defects and reduce risks. This article discusses some details of the current project for the analysis of thermal images using convolutional neural networks.
Style APA, Harvard, Vancouver, ISO itp.
32

Cebulak, S., B. Smieja-Król, S. Duber, M. Misz i A. W. Morawski. "Oxyreactive thermal analysis". Journal of Thermal Analysis and Calorimetry 77, nr 1 (2004): 201–6. http://dx.doi.org/10.1023/b:jtan.0000033204.53768.bb.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Wittkopf, H., H. J. Flammersheim i L. Herlitze. "Thermal desorption analysis:". Journal of Thermal Analysis 33, nr 1 (marzec 1988): 253–58. http://dx.doi.org/10.1007/bf01914608.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Gotzen.ir, Nicolaas-Alexander, i Guy Van Assche. "Nano-Thermal Analysis". Imaging & Microscopy 9, nr 2 (czerwiec 2007): 33–34. http://dx.doi.org/10.1002/imic.200790144.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

PERVEZ, Sardar Hamza, Muhammad Ali KAMRAN, Sallahuddin MİR, Abdul AHAD, Muhammad Alam Zaıb KHAN i Muhammad FAIQ. "Development and performance analysis of hybrid photovoltaic/thermal (PV/T) system". Journal of Thermal Engineering 7, nr 14 (30.12.2021): 1936–44. http://dx.doi.org/10.18186/thermal.1051272.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

ALOK, Praveen, i Debjyoti SAHU. "Numerical analysis of a two-phase injection refrigeration cycle using R32". Journal of Thermal Engineering 8, nr 2 (11.03.2022): 157–68. http://dx.doi.org/10.18186/thermal.1077857.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Boonsu, R., S. Sukchai, S. Hemavibool i S. Somkun. "Performance Analysis of Thermal Energy Storage Prototype in Thailand". Journal of Clean Energy Technologies 4, nr 2 (2015): 101–6. http://dx.doi.org/10.7763/jocet.2016.v4.261.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Djurdjevic, Mile B., Iban Vicario i Gerhard Huber. "Review of thermal analysis applications in aluminium casting plants". Revista de Metalurgia 50, nr 1 (30.03.2014): e004. http://dx.doi.org/10.3989/revmetalm.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Čejka, J. "Vandenbrandeite, CuUO2(OH)4: Thermal analysis and infrared spectrum". Neues Jahrbuch für Mineralogie - Monatshefte 1994, nr 3 (15.03.1994): 112–20. http://dx.doi.org/10.1127/njmm/1994/1994/112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

HASAN, Md Kamrul, i Katsuhiko SASAKI. "301 Thermal Deformation Analysis of Solar Cells Considering Thermal Profiles of both Manufacturing and Working Processes". Proceedings of the Materials and processing conference 2013.21 (2013): _301–1_—_301–5_. http://dx.doi.org/10.1299/jsmemp.2013.21._301-1_.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Karakurt, A. Sinan. "PERFORMANCE ANALYSIS OF A STEAM TURBINE POWER PLANT AT PART LOAD CONDITIONS". Journal of Thermal Engineering 3, nr 2 (1.04.2017): 1121. http://dx.doi.org/10.18186/thermal.298611.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

"Thermal analysis of Solar dryer". International Journal of Current Engineering and Technology, 1.01.2011. http://dx.doi.org/10.14741/ijcet/22774106/spl.5.6.2016.51.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

"Structural and Thermal Analysis of Piston". International Journal of Current Engineering and Technology, 1.01.2011. http://dx.doi.org/10.14741/ijcet/22774106/spl.5.6.2016.5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

NUWAYHID, Rida Y. "Thermal analysis of photovoltaic-thermoelectric hybrids". Journal of Thermal Engineering, 2024, 1149–63. http://dx.doi.org/10.14744/thermal.0000858.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

AKRAM, Wasim, Mohd PARVEZ i Osama KHAN. "Parametric analysis of solar-assisted trigeneration system based on energy and exergy analyses". Journal of Thermal Engineering, 22.05.2023, 764–75. http://dx.doi.org/10.18186/thermal.1300538.

Pełny tekst źródła
Streszczenie:
Rapid deterioration of environment has led researchers to explore feasible forms of energy which could produce multiple energy forms with minimum inputs. Hence, in this study a nov-el trigeneration setup is explored so as to achieve simultaneous forms of energy in the form of electrical energy, heating and cooling, driving its primary energy requirements through a solar power tower. Molten salt is used in this study to transfer the heat from the solar component to the vapor absorption apparatus. Further the vapor absorption system is tested for thermody-namic performance for a couple of refrigerants (LiNO3-H2O and LiBr-H2O), so as to establish the Pareto-optimal fluid among them. In order to remove any adherent error in the measuring procedure, all equipment’s uncertainty analysis was performed which was negligibly small approximately at 5.34 % in terms of power plant efficiencies. An exact analysis was performed so as to estimate energy and exergy in efficiencies in the equipment while varying input pa-rameters. Zenith exergy destruction was achieved in 33.6% by the central receiver, followed by 24.9% by heliostat, and 7.8% in heat recovery steam generator. The highest energy and exergy efficiencies (62.6% and 20.6%) are attained on system working on LiBr-H2O, whereas (60.9% and 19.6%) were obtained in LiNO3-H2O operated system.
Style APA, Harvard, Vancouver, ISO itp.
46

-, Mrunmayee Kulkarni, Malhar Kulkarni -, Advait Kondra - i Vijay Kulal -. "Thermal Analysis of Fin: Comparative Thermal Analysis". International Journal For Multidisciplinary Research 5, nr 5 (7.10.2023). http://dx.doi.org/10.36948/ijfmr.2023.v05i05.6976.

Pełny tekst źródła
Streszczenie:
The fins are extended surfaces that are made to increase the rate of heat transfer through the equipment/components. Generally, they are used for faster cooling of the equipment/components. The comparative thermal analysis of rectangular fin and porous fin is done in the paper. Both the fins are subjected to the same conditions i.e., both the fins have the same room temperature, have the same dimensions, and are exposed to the same surrounding conditions i.e., the flow of air over the fins, the ambient temperature of the fins, etc. Of course, for calculations, some assumptions are made. The heat transfer rate from both fins is calculated and compared. The efficiency of fins and effectiveness are calculated and compared. The temperature distribution graph for the rectangular fin is plotted in Excel. The modeling software Solidworks is used to model rectangular non-porous fin and rectangular porous fins. The thermal analysis of both the fins is done in the software called Simscale.
Style APA, Harvard, Vancouver, ISO itp.
47

"Thermal analysis of dry whey and lactose". Milk branch magazine, nr 7 (17.06.2019): 36–39. http://dx.doi.org/10.33465/2222-5455-2019-7-36-39.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

"Modeling and Thermal Analysis of Compression Coupling". International Journal of Science and Research (IJSR) 4, nr 12 (5.12.2015): 2218–22. http://dx.doi.org/10.21275/v4i12.nov152336.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

"THERMAL ANALYSIS OF A GAS TURBINE BLADE". International Journal of Modern Trends in Engineering & Research 3, nr 8 (22.08.2016): 77–89. http://dx.doi.org/10.21884/ijmter.2016.3011.mypsy.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

SALHI, Hicham, Abdelmounaim HADJIRA i Basharat JAMIL. "Statistical analysis of the solar diffuse fraction radiation using regression analysis of longitudinal data in India". Journal of Thermal Engineering, 22.05.2023, 776–85. http://dx.doi.org/10.18186/thermal.1300542.

Pełny tekst źródła
Streszczenie:
In this study, the validity of the estimation of a single regression equation for the diffuse frac-tion across 22 stations in India using the two parameters: the clearness index and the sunshine ratio is tested. The homogeneity test based on Fisher’s statistics was applied to test the homo-geneity of the estimated parameters across all stations. The results showed that the p-value at the level of 5% for each model is smaller than 0.05, indicating that all stations were heteroge-neous. The Hierarchical Cluster Analysis (HCA) was used to classify the data into homoge-nous clusters. The results of HCA indicated that the longitudinal data were divided into four main clusters. For each cluster, the regression analysis was applied based on the longitudinal data then, the fixed effects model (FEM) and the random-effects model (REM) were used for the evaluation. Further, the Hausman test was applied to choose between the fixed effects model and the random-effects model. Finally, the results showed that the four best regression models were found for the selected stations in the study area.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii