Gotowa bibliografia na temat „THEORY OF SIGNED GRAPHS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „THEORY OF SIGNED GRAPHS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "THEORY OF SIGNED GRAPHS"
Hou, Yaoping, i Dijian Wang. "Laplacian integral subcubic signed graphs". Electronic Journal of Linear Algebra 37 (26.02.2021): 163–76. http://dx.doi.org/10.13001/ela.2021.5699.
Pełny tekst źródłaBelardo, Francesco, i Maurizio Brunetti. "Connected signed graphs L-cospectral to signed ∞-graphs". Linear and Multilinear Algebra 67, nr 12 (9.07.2018): 2410–26. http://dx.doi.org/10.1080/03081087.2018.1494122.
Pełny tekst źródłaLi, Yu, Meng Qu, Jian Tang i Yi Chang. "Signed Laplacian Graph Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 4 (26.06.2023): 4444–52. http://dx.doi.org/10.1609/aaai.v37i4.25565.
Pełny tekst źródłaZhang, Xianhang, Hanchen Wang, Jianke Yu, Chen Chen, Xiaoyang Wang i Wenjie Zhang. "Polarity-based graph neural network for sign prediction in signed bipartite graphs". World Wide Web 25, nr 2 (16.02.2022): 471–87. http://dx.doi.org/10.1007/s11280-022-01015-4.
Pełny tekst źródłaTupper, Melissa, i Jacob A. White. "Online list coloring for signed graphs". Algebra and Discrete Mathematics 33, nr 2 (2022): 151–72. http://dx.doi.org/10.12958/adm1806.
Pełny tekst źródłaDIAO, Y., G. HETYEI i K. HINSON. "TUTTE POLYNOMIALS OF TENSOR PRODUCTS OF SIGNED GRAPHS AND THEIR APPLICATIONS IN KNOT THEORY". Journal of Knot Theory and Its Ramifications 18, nr 05 (maj 2009): 561–89. http://dx.doi.org/10.1142/s0218216509007075.
Pełny tekst źródłaHameed, Shahul K., T. V. Shijin, P. Soorya, K. A. Germina i Thomas Zaslavsky. "Signed distance in signed graphs". Linear Algebra and its Applications 608 (styczeń 2021): 236–47. http://dx.doi.org/10.1016/j.laa.2020.08.024.
Pełny tekst źródłaAcharya, B. D. "Signed intersection graphs". Journal of Discrete Mathematical Sciences and Cryptography 13, nr 6 (grudzień 2010): 553–69. http://dx.doi.org/10.1080/09720529.2010.10698314.
Pełny tekst źródłaLi, Shu, i Jianfeng Wang. "Yet More Elementary Proof of Matrix-Tree Theorem for Signed Graphs". Algebra Colloquium 30, nr 03 (29.08.2023): 493–502. http://dx.doi.org/10.1142/s1005386723000408.
Pełny tekst źródłaBrown, John, Chris Godsil, Devlin Mallory, Abigail Raz i Christino Tamon. "Perfect state transfer on signed graphs". Quantum Information and Computation 13, nr 5&6 (maj 2013): 511–30. http://dx.doi.org/10.26421/qic13.5-6-10.
Pełny tekst źródłaRozprawy doktorskie na temat "THEORY OF SIGNED GRAPHS"
Bowlin, Garry. "Maximum frustration of bipartite signed graphs". Diss., Online access via UMI:, 2009.
Znajdź pełny tekst źródłaWang, Jue. "Algebraic structures of signed graphs /". View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?MATH%202007%20WANG.
Pełny tekst źródłaSen, Sagnik. "A contribution to the theory of graph homomorphisms and colorings". Phd thesis, Bordeaux, 2014. http://tel.archives-ouvertes.fr/tel-00960893.
Pełny tekst źródłaSivaraman, Vaidyanathan. "Some Topics concerning Graphs, Signed Graphs and Matroids". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354645035.
Pełny tekst źródłaSun, Qiang. "A contribution to the theory of (signed) graph homomorphism bound and Hamiltonicity". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS109/document.
Pełny tekst źródłaIn this thesis, we study two main problems in graph theory: homomorphism problem of planar (signed) graphs and Hamiltonian cycle problem.As an extension of the Four-Color Theorem, it is conjectured ([80],[41]) that every planar consistent signed graph of unbalanced-girth d+1(d>1) admits a homomorphism to signed projective cube SPC(d) of dimension d. It is naturally asked that:Is SPC(d) an optimal bound of unbalanced-girth d+1 for all planar consistent signed graphs of unbalanced-girth d+1?In Chapter 2, we prove that: if (B,Ω) is a consistent signed graph of unbalanced-girth d which bounds the class of consistent signed planar graphs of unbalanced-girth d, then |B|≥2^{d-1}. Furthermore,if no subgraph of (B,Ω) bounds the same class, δ(B)≥d, and therefore,|E(B)|≥d·2^{d-2}.Our result shows that if the conjecture above holds, then the SPC(d) is an optimal bound both in terms of number of vertices and number of edges.When d=2k, the problem is equivalent to the homomorphisms of graphs: isPC(2k) an optimal bound of odd-girth 2k+1 for P_{2k+1}(the class of all planar graphs of odd-girth at least 2k+1)? Note that K_4-minor free graphs are planar graphs, is PC(2k) also an optimal bound of odd-girth 2k+1 for all K_4-minor free graphs of odd-girth 2k+1 ? The answer is negative, in [6], a family of graphs of order O(k^2) bounding the K_4-minor free graphs of odd-girth 2k+1 were given. Is this an optimal bound? In Chapter 3, we prove that: if B is a graph of odd-girth 2k+1 which bounds all the K_4-minor free graphs of odd-girth 2k+1,then |B|≥(k+1)(k+2)/2. Our result together with the result in [6] shows that order O(k^2) is optimal.Furthermore, if PC(2k) bounds P_{2k+1},then PC(2k) also bounds P_{2r+1}(r>k). However, in this case we believe that a proper subgraph of PC(2k) would suffice to bound P_{2r+1}, then what’s the optimal subgraph of PC(2k) that bounds P_{2r+1}? The first case of this problem which is not studied is k=3 and r=5. For this case, Naserasr [81] conjectured that the Coxeter graph bounds P_{11} . Supporting this conjecture, in Chapter 4, we prove that the Coxeter graph bounds P_{17}.In Chapter 5,6, we study the Hamiltonian cycle problems. Dirac showed in 1952that every graph of order n is Hamiltonian if any vertex is of degree at least n/2. This result started a new approach to develop sufficient conditions on degrees for a graph to be Hamiltonian. Many results have been obtained in generalization of Dirac’s theorem. In the results to strengthen Dirac’s theorem, there is an interesting research area: to control the placement of a set of vertices on a Hamiltonian cycle such that thesevertices have some certain distances among them on the Hamiltonian cycle.In this thesis, we consider two related conjectures, one is given by Enomoto: if G is a graph of order n≥3, and δ(G)≥n/2+1, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that dist_C(x, y)=n/2. Motivated by this conjecture, it is proved,in [32],that a pair of vertices are located at distances no more than n/6 on a Hamiltonian cycle. In [33], the cases δ(G) ≥(n+k)/2 are considered, it is proved that a pair of vertices can be located at any given distance from 2 to k on a Hamiltonian cycle. Moreover, Faudree and Li proposed a more general conjecture: if G is a graph of order n≥3, and δ(G)≥n/2+1, then for any pair of vertices x, y in G andany integer 2≤k≤n/2, there is a Hamiltonian cycle C of G such that dist_C(x, y) = k. Using Regularity Lemma and Blow-up Lemma, in Chapter 5, we give a proof ofEnomoto’s conjecture for graphs of sufficiently large order, and in Chapter 6, we give a proof of Faudree and Li’s conjecture for graphs of sufficiently large order
Kotzagiannidis, Madeleine S. "From spline wavelet to sampling theory on circulant graphs and beyond : conceiving sparsity in graph signal processing". Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/56614.
Pełny tekst źródłaLucas, Claire. "Trois essais sur les relations entre les invariants structuraux des graphes et le spectre du Laplacien sans signe". Phd thesis, Ecole Polytechnique X, 2013. http://pastel.archives-ouvertes.fr/pastel-00956183.
Pełny tekst źródłaMutar, Mohammed A. "Hamiltonicity in Bidirected Signed Graphs and Ramsey Signed Numbers". Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1513377549200572.
Pełny tekst źródłaKang, Yingli [Verfasser]. "Coloring of signed graphs / Yingli Kang". Paderborn : Universitätsbibliothek, 2018. http://d-nb.info/1153824663/34.
Pełny tekst źródłaOmeroglu, Nurettin Burak. "K-way Partitioning Of Signed Bipartite Graphs". Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614817/index.pdf.
Pełny tekst źródłaKsiążki na temat "THEORY OF SIGNED GRAPHS"
Graphs. Wyd. 2. Amsterdam: North Holland, 1985.
Znajdź pełny tekst źródłaKandasamy, W. B. Vasantha. Groups as graphs. Slatina, Judetul Olt, Romania: Editura CuArt, 2009.
Znajdź pełny tekst źródłaCvetković, Dragoš M. Eigenspaces of graphs. Cambridge: Cambridge University Press, 2008.
Znajdź pełny tekst źródłaPesch, Erwin. Retracts of graphs. Frankfurt am Main: Athenaum, 1988.
Znajdź pełny tekst źródłaCvetković, Dragoš M. Eigenspaces of graphs. Cambridge: Cambridge University Press, 1997.
Znajdź pełny tekst źródłaBorinsky, Michael. Graphs in Perturbation Theory. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03541-9.
Pełny tekst źródłaThulasiraman, K., i M. N. S. Swamy. Graphs: Theory and Algorithms. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1992. http://dx.doi.org/10.1002/9781118033104.
Pełny tekst źródłaS, Swamy M. N., red. Graphs: Theory and algorithms. New York: Wiley, 1992.
Znajdź pełny tekst źródłaBerge, Claude. The theory of graphs. Mineola, N.Y: Dover, 2001.
Znajdź pełny tekst źródłaH, Haemers Willem, i SpringerLink (Online service), red. Spectra of Graphs. New York, NY: Andries E. Brouwer and Willem H. Haemers, 2012.
Znajdź pełny tekst źródłaCzęści książek na temat "THEORY OF SIGNED GRAPHS"
Pranjali i Amit Kumar. "Algebraic Signed Graphs: A Review". W Recent Advancements in Graph Theory, 261–71. Boca Raton : CRC Press, 2020. | Series: Mathematical engineering, manufacturing, and management sciences: CRC Press, 2020. http://dx.doi.org/10.1201/9781003038436-22.
Pełny tekst źródłaNaserasr, Reza, Edita Rollovâ i Éric Sopena. "Homomorphisms of signed bipartite graphs". W The Seventh European Conference on Combinatorics, Graph Theory and Applications, 345–50. Pisa: Scuola Normale Superiore, 2013. http://dx.doi.org/10.1007/978-88-7642-475-5_55.
Pełny tekst źródłaVijayakumar, G. R., i N. M. Singhi. "Some Recent Results on Signed Graphs with Least Eigenvalues ≥ -2". W Coding Theory and Design Theory, 213–18. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4613-8994-1_16.
Pełny tekst źródłaNaserasr, Reza, Edita Rollová i Éric Sopena. "On homomorphisms of planar signed graphs to signed projective cubes". W The Seventh European Conference on Combinatorics, Graph Theory and Applications, 271–76. Pisa: Scuola Normale Superiore, 2013. http://dx.doi.org/10.1007/978-88-7642-475-5_44.
Pełny tekst źródłaSteffen, Eckhard, i Michael Schubert. "Nowhere-zero flows on signed regular graphs". W The Seventh European Conference on Combinatorics, Graph Theory and Applications, 621–22. Pisa: Scuola Normale Superiore, 2013. http://dx.doi.org/10.1007/978-88-7642-475-5_102.
Pełny tekst źródłaAgrawal, Kalin, i William H. Batchelder. "Cultural Consensus Theory: Aggregating Signed Graphs under a Balance Constraint". W Social Computing, Behavioral - Cultural Modeling and Prediction, 53–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29047-3_7.
Pełny tekst źródłaBonchi, Filippo, Paweł Sobociński i Fabio Zanasi. "A Categorical Semantics of Signal Flow Graphs". W CONCUR 2014 – Concurrency Theory, 435–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44584-6_30.
Pełny tekst źródłada Silva, Ilda P. F. "Reconstruction of a Rank 3 Oriented Matroids from its Rank 2 Signed Circuits". W Graph Theory in Paris, 355–64. Basel: Birkhäuser Basel, 2006. http://dx.doi.org/10.1007/978-3-7643-7400-6_28.
Pełny tekst źródłaRahaman, Inzamam, i Patrick Hosein. "Extending DeGroot Opinion Formation for Signed Graphs and Minimizing Polarization". W Complex Networks & Their Applications IX, 298–309. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65351-4_24.
Pełny tekst źródłaAlam, Jahangir, Guoqing Hu, Hafiz Md Hasan Babu i Huazhong Xu. "Automatic Control Systems, Block Diagrams, and Signal Flow Graphs". W Control Engineering Theory and Applications, 161–204. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003293859-3.
Pełny tekst źródłaStreszczenia konferencji na temat "THEORY OF SIGNED GRAPHS"
Varma, Rohan A., i Jelena Kovacevic. "SAMPLING THEORY FOR GRAPH SIGNALS ON PRODUCT GRAPHS". W 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2018. http://dx.doi.org/10.1109/globalsip.2018.8646362.
Pełny tekst źródłaNarang, Sunil K., i Antonio Ortega. "Downsampling graphs using spectral theory". W ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5947281.
Pełny tekst źródłaPena, Rodrigo, Xavier Bresson i Pierre Vandergheynst. "Source localization on graphs via ℓ1 recovery and spectral graph theory". W 2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP). IEEE, 2016. http://dx.doi.org/10.1109/ivmspw.2016.7528230.
Pełny tekst źródłaSusymary, J., i R. Lawrance. "Graph theory analysis of protein-protein interaction graphs through clustering method". W 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS). IEEE, 2017. http://dx.doi.org/10.1109/itcosp.2017.8303125.
Pełny tekst źródłaVaidyanathan, Palghat P., i Oguzhan Teke. "Extending classical multirate signal processing theory to graphs". W Wavelets and Sparsity XVII, redaktorzy Yue M. Lu, Manos Papadakis i Dimitri Van De Ville. SPIE, 2017. http://dx.doi.org/10.1117/12.2272362.
Pełny tekst źródłaKotzagiannidis, Madeleine S., i Pier Luigi Dragotti. "The graph FRI framework-spline wavelet theory and sampling on circulant graphs". W 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016. http://dx.doi.org/10.1109/icassp.2016.7472904.
Pełny tekst źródłaTan, Yu, Nicholas Chua, Clarence Koh i Anand Bhojan. "RTSDF: Real-time Signed Distance Fields for Soft Shadow Approximation in Games". W 17th International Conference on Computer Graphics Theory and Applications. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0010996200003124.
Pełny tekst źródłaLoeliger, Hans-Andrea, i C. Reller. "Signal processing with factor graphs: Beamforming and Hilbert transform". W 2013 Information Theory and Applications Workshop (ITA 2013). IEEE, 2013. http://dx.doi.org/10.1109/ita.2013.6502952.
Pełny tekst źródłaWu, Guohua, Liguo Zhang i Jiejuan Tong. "Online Fault Diagnosis of Nuclear Power Plants Using Signed Directed Graph and Fuzzy Theory". W 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66367.
Pełny tekst źródłaMiller, Benjamin A., Nadya T. Bliss i Patrick J. Wolfe. "Toward signal processing theory for graphs and non-Euclidean data". W 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2010. http://dx.doi.org/10.1109/icassp.2010.5494930.
Pełny tekst źródłaRaporty organizacyjne na temat "THEORY OF SIGNED GRAPHS"
Gennip, Yves van, Nestor Guillen, Braxton Osting i Andrea L. Bertozzi. Mean Curvature, Threshold Dynamics, and Phase Field Theory on Finite Graphs. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2013. http://dx.doi.org/10.21236/ada581612.
Pełny tekst źródłaMesbahi, Mehran. Dynamic Security and Robustness of Networked Systems: Random Graphs, Algebraic Graph Theory, and Control over Networks. Fort Belvoir, VA: Defense Technical Information Center, luty 2012. http://dx.doi.org/10.21236/ada567125.
Pełny tekst źródłaPerl, Avichai, Bruce I. Reisch i Ofra Lotan. Transgenic Endochitinase Producing Grapevine for the Improvement of Resistance to Powdery Mildew (Uncinula necator). United States Department of Agriculture, styczeń 1994. http://dx.doi.org/10.32747/1994.7568766.bard.
Pełny tekst źródłaChristensen, Lance. PR-459-133750-R03 Fast Accurate Automated System To Find And Quantify Natural Gas Leaks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), listopad 2019. http://dx.doi.org/10.55274/r0011633.
Pełny tekst źródłaHrebeniuk, Bohdan V. Modification of the analytical gamma-algorithm for the flat layout of the graph. [б. в.], grudzień 2018. http://dx.doi.org/10.31812/123456789/2882.
Pełny tekst źródłaCram, Jana, Mary Levandowski, Kaci Fitzgibbon i Andrew Ray. Water resources summary for the Snake River and Jackson Lake Reservoir in Grand Teton National Park and John D. Rockefeller, Jr. Memorial Parkway: Preliminary analysis of 2016 data. National Park Service, czerwiec 2021. http://dx.doi.org/10.36967/nrr-2285179.
Pełny tekst źródłaBoyle, M., i Elizabeth Rico. Terrestrial vegetation monitoring at Cumberland Island National Seashore: 2020 data summary. National Park Service, wrzesień 2022. http://dx.doi.org/10.36967/2294287.
Pełny tekst źródłaBoyle, Maxwell, i Elizabeth Rico. Terrestrial vegetation monitoring at Fort Pulaski National Monument: 2019 data summary. National Park Service, grudzień 2021. http://dx.doi.org/10.36967/nrds-2288716.
Pełny tekst źródłaBoyle, Maxwell, i Elizabeth Rico. Terrestrial vegetation monitoring at Cape Hatteras National Seashore: 2019 data summary. National Park Service, styczeń 2022. http://dx.doi.org/10.36967/nrr-2290019.
Pełny tekst źródłaKapulnik, Yoram, Maria J. Harrison, Hinanit Koltai i Joseph Hershenhorn. Targeting of Strigolacatones Associated Pathways for Conferring Orobanche Resistant Traits in Tomato and Medicago. United States Department of Agriculture, lipiec 2011. http://dx.doi.org/10.32747/2011.7593399.bard.
Pełny tekst źródła