Gotowa bibliografia na temat „Theoreical and Computational Chemistry”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Theoreical and Computational Chemistry”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Theoreical and Computational Chemistry"
Hase, W. L., i G. E. Scuseria. "Computational chemistry". Computing in Science & Engineering 5, nr 4 (lipiec 2003): 12–13. http://dx.doi.org/10.1109/mcise.2003.1208636.
Pełny tekst źródłaTruhlar, D. G., i V. Mckoy. "Computational chemistry". Computing in Science & Engineering 2, nr 6 (listopad 2000): 19–21. http://dx.doi.org/10.1109/mcise.2000.881703.
Pełny tekst źródłaLeszczynski, Jerzy. "Computational chemistry". Parallel Computing 26, nr 7-8 (lipiec 2000): 817–18. http://dx.doi.org/10.1016/s0167-8191(00)00013-2.
Pełny tekst źródłaDeTar, DeLosF. "Computational Chemistry". Computers & Chemistry 13, nr 3 (styczeń 1989): 297. http://dx.doi.org/10.1016/0097-8485(89)85015-6.
Pełny tekst źródłaSchuster, Peter, i Peter Wolschann. "Computational chemistry". Monatshefte für Chemie - Chemical Monthly 139, nr 4 (18.01.2008): III—IV. http://dx.doi.org/10.1007/s00706-008-0882-8.
Pełny tekst źródłaSchneider, Gisbert. "Computational medicinal chemistry". Future Medicinal Chemistry 3, nr 4 (marzec 2011): 393–94. http://dx.doi.org/10.4155/fmc.11.10.
Pełny tekst źródłaFernández, Israel, i Fernando P. Cossío. "Applied computational chemistry". Chemical Society Reviews 43, nr 14 (2014): 4906. http://dx.doi.org/10.1039/c4cs90040e.
Pełny tekst źródłaYates, Brian F. "Computational organic chemistry". Annual Reports Section "B" (Organic Chemistry) 102 (2006): 219. http://dx.doi.org/10.1039/b518099f.
Pełny tekst źródłaBachrach, Steven M. "Computational organic chemistry". Annual Reports Section "B" (Organic Chemistry) 105 (2009): 398. http://dx.doi.org/10.1039/b822063h.
Pełny tekst źródłaMück-Lichtenfeld, Christian. "Computational Organic Chemistry". Synthesis 2008, nr 11 (czerwiec 2008): 1808. http://dx.doi.org/10.1055/s-2008-1080541.
Pełny tekst źródłaRozprawy doktorskie na temat "Theoreical and Computational Chemistry"
Belding, Stephen Richard. "Computational electrochemistry". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:e997642f-fbaa-469c-98a3-f359b0996f03.
Pełny tekst źródłaDinescu, Adriana Cundari Thomas R. "Metals in chemistry and biology computational chemistry studies /". [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-3678.
Pełny tekst źródłaDinescu, Adriana. "Metals in Chemistry and Biology: Computational Chemistry Studies". Thesis, University of North Texas, 2007. https://digital.library.unt.edu/ark:/67531/metadc3678/.
Pełny tekst źródłaLathey, Daniel Craig. "Fluorescence prediction through computational chemistry". Huntington, WV : [Marshall University Libraries], 2005. http://www.marshall.edu/etd/descript.asp?ref=522.
Pełny tekst źródłaRajarathinam, Kayathri. "Nutraceuticals based computational medicinal chemistry". Licentiate thesis, KTH, Teoretisk kemi och biologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-122681.
Pełny tekst źródłaQC 20130531
Brookes, Benjamin A. "Computational electrochemistry". Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270000.
Pełny tekst źródłaBertolani, Steve James. "Computational Methods for Modeling Enzymes". Thesis, University of California, Davis, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10928544.
Pełny tekst źródłaEnzymes play a crucial role in modern biotechnology, industry, food processing and medical applications. Since their first discovered industrial use, man has attempted to discover new enzymes from Nature to catalyze different chemical reactions. In modern times, with the advent of computational methods, protein structure solutions, protein sequencing and DNA synthesis methods, we now have the tools to enable new approaches to rational enzyme engineering. With an enzyme structure in hand, a researcher may run an in silico experiment to sample different amino acids in the active site in order to identify new combinations which likely stabilize a transition-state-enzyme model. A suggested mutation can then be encoded into the desired enzyme gene, ordered, synthesized and tested. Although this truly astonishing feat of engineering and modern biotechnology allows the redesign of existing enzymes to acquire a new substrate specificity, it still requires a large amount of time, capital and technical capabilities.
Concurrently, while making strides in computational protein design, the cost of sequencing DNA plummeted after the turn of the century. With the reduced cost of sequencing, the number of sequences in public databases of naturally occurring proteins has grown exponentially. This new, large source of information can be utilized to enable rational enzyme design, as long as it can be coupled with accurate modeling of the protein sequences.
This work first describes a novel approach to reengineering enzymes (Genome Enzyme Orthologue Mining; GEO) that utilizes the vast amount of protein sequences in modern databases along with extensive computation modeling and achieves comparable results to the state-of-the-art rational enzyme design methods. Then, inspired by the success of this new method and aware of it's reliance on the accuracy of the protein models, we created a computational benchmark to both measure the accuracy of our models as well as improve it by encoding additional information about the structure, derived from mechanistic studies (Catalytic Geometry constraints; CG). Lastly, we use the improved accuracy method to automatically model hundreds of putative enzymes sequences and dock substrates into them to extract important features that are then used to inform experiments and design. This is used to reengineer a ribonucleotide reductase to catalyze a aldehyde deformylating oxygenase reaction.
These chapters advance the field of rational enzyme engineering, by providing a novel technique that may enable efficient routes to rationally design enzymes for reactions of interest. These chapters also advance the field of homology modeling, in the specific domain in which the researcher is modeling an enzyme with a known chemical reaction. Lastly, these chapters and techniques lead to an example which utilizes highly accurate computational models to create features which can help guide the rational design of enzyme catalysts.
Funes, Ardoiz Ignacio. "Computational Chemistry for Homogeneous Redox Catalysis". Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/456826.
Pełny tekst źródłaEsta Tesis Doctoral se ha centrado en el estudio computacional mediante metodología DFT (Teoría del funcional de la densidad) de reacciones redox catalizadas en fase homogénea. La primera parte versa sobre el estudio computacional de dos ciclos catalíticos de acoplamiento oxidativo. Este estudio dio con una de las claves en este tipo de reacciones, el efecto del oxidante externo. Demostramos en ambas reacciones como diferentes metales de transición podían colaborar para dar una reacción más eficiente y selectiva. Además descubrimos las claves para la regioselectividad en ambas reacciones. La segunda reacción fue estudiada en colaboración con el grupo experimental del profesor Frederic Patureau (University of Kaiserslautern). Por otro lado, la segunda parte de esta tesis se centra en el estudio teórico de la reacción de oxidación de agua catalizada por complejos de la primera serie de transición. Desarrollamos una nueva familia de catalizadores mononucleares de cobre con la colaboración experimental del grupo del profesor Antoni Llobet (ICIQ), descubriendo un nuevo mecanismo en la formación de enlace oxígeno-oxígeno, el ataque nucleófilo del agua mediante la transferencia de un electrón (SET-WNA). Tras esto extendimos este mecanismo a otros sistemas de cobre y de rutenio, redefiniendo el contexto mecanístico para esta reacción en catálisis homogénea. Esta tesis, por tanto, proporciona una profunda base mecanística sobre el estudio de importantes reacciones redox mediante química computacional a través de los métodos DFT.
This Doctoral Thesis is focused on the computational study by DFT methodology (Density Functional Theory) of homogeneous redox catalized reactions. The first part describes successfully the mechanism of two different catalytic cycles of oxidative coupling reactions. This study found out the explanation about one of the challenging questions on the field, the key role of the external oxidant. We demonstrated the cooperation between different transition metals is essential to catalyze the reaction efficiently and with good selectivities. Additionally, we explained also the regioselectivity of both reactions, in very good agreement with the experimental results. The second reaction was studied in collaboration with the experimental group of professor Frederic Patureau (University of Kaiserslautern). On the other hand, the second part of the thesis is focused on the theoretical study of water oxidation reaction catalyzed by first-row transition metal complexes. Firstly, we developed a new family of mononuclear copper complexes in collaboration with the experimental group of professor Antoni Llobet (ICIQ), discovering a new mechanism for the oxygen-oxygen bond formation step, the water nucleophilic attack. single electron transfer (SET-WNA). From this point, we extended the new mechanism to other catalytic systems based on copper and ruthenium, redefining the mechanistic scenario for the homogeneous catalytic version of this reaction. Therefore, this thesis provides a deep theoretical knowledge abour the homogeneous redox catalysis mechanisms by DFT calculations.
Sykes, Adam. "High-throughput computational chemistry of macromolecules". Thesis, University of Liverpool, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507497.
Pełny tekst źródłaTassell, M. J. "Computational investigations of molecular actinide chemistry". Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1386659/.
Pełny tekst źródłaKsiążki na temat "Theoreical and Computational Chemistry"
Houk, Kendall N., i Fang Liu. Computational Chemistry. Washington, DC, USA: American Chemical Society, 2022. http://dx.doi.org/10.1021/acsinfocus.7e5011.
Pełny tekst źródłaLewars, Errol G. Computational Chemistry. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-3862-3.
Pełny tekst źródłaLewars, Errol G. Computational Chemistry. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30916-3.
Pełny tekst źródłaG, Richards W., red. Computational chemistry. Oxford [England]: Oxford University Press, 1995.
Znajdź pełny tekst źródła1964-, Cundari Thomas R., red. Computational organometallic chemistry. New York: Marcel Dekker, 2001.
Znajdź pełny tekst źródłaBachrach, Steven M. Computational organic chemistry. Hoboken, N.J: Wiley-Interscience, 2007.
Znajdź pełny tekst źródłaWiest, Olaf, i Yundong Wu, red. Computational Organometallic Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25258-7.
Pełny tekst źródłaOnishi, Taku. Quantum Computational Chemistry. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5933-9.
Pełny tekst źródłaBachrach, Steven M. Computational Organic Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118671191.
Pełny tekst źródłaCurtiss, L. A., i M. S. Gordon, red. Computational Materials Chemistry. Dordrecht: Kluwer Academic Publishers, 2005. http://dx.doi.org/10.1007/1-4020-2117-8.
Pełny tekst źródłaCzęści książek na temat "Theoreical and Computational Chemistry"
Safouhi, Hassan, i Ahmed Bouferguene. "Computational Chemistry". W Scientific Data Mining and Knowledge Discovery, 173–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02788-8_8.
Pełny tekst źródłaSteele, Guy L., Xiaowei Shen, Josep Torrellas, Mark Tuckerman, Eric J. Bohm, Laxmikant V. Kalé, Glenn Martyna i in. "Computational Chemistry". W Encyclopedia of Parallel Computing, 352. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-09766-4_2417.
Pełny tekst źródłaKlostermeier, Dagmar, i Markus G. Rudolph. "Computational Biology". W Biophysical Chemistry, 341–61. Names: Klostermeier, Dagmar, author. | Rudolph, Markus G., author. Title: Biophysical chemistry / Dagmar Klostermeier and Markus G. Rudolph. Description: Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017]: CRC Press, 2018. http://dx.doi.org/10.1201/9781315156910-21.
Pełny tekst źródłaLewars, Errol G. "An Outline of What Computational Chemistry Is All About". W Computational Chemistry, 1–7. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3862-3_1.
Pełny tekst źródłaLewars, Errol G. "The Concept of the Potential Energy Surface". W Computational Chemistry, 9–43. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3862-3_2.
Pełny tekst źródłaLewars, Errol G. "Molecular Mechanics". W Computational Chemistry, 45–83. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-3862-3_3.
Pełny tekst źródłaLewars, Errol G. "Introduction to Quantum Mechanics in Computational Chemistry". W Computational Chemistry, 85–173. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-3862-3_4.
Pełny tekst źródłaLewars, Errol G. "Ab initio Calculations". W Computational Chemistry, 175–390. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3862-3_5.
Pełny tekst źródłaLewars, Errol G. "Semiempirical Calculations". W Computational Chemistry, 391–444. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3862-3_6.
Pełny tekst źródłaLewars, Errol G. "Density Functional Calculations". W Computational Chemistry, 445–519. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3862-3_7.
Pełny tekst źródłaStreszczenia konferencji na temat "Theoreical and Computational Chemistry"
Onishi, Taku. "Recent computational chemistry". W INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2015 (ICCMSE 2015). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4938810.
Pełny tekst źródłaMaroulis, George. "Computational quantum chemistry". W INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009: (ICCMSE 2009). AIP, 2012. http://dx.doi.org/10.1063/1.4771781.
Pełny tekst źródłaCisneros, Gerardo, J. A. Cogordan, Miguel Castro i Chumin Wang. "Computational Chemistry and Chemical Engineering". W Third UNAM-CRAY Supercomputing Conference. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814529426.
Pełny tekst źródłaAdamov, Dmitri P., Alexey Y. Akhlyostin, Alexandre Z. Fazliev, Eugeni P. Gordov, Alexey S. Karyakin, Sergey A. Mikhailov i Olga B. Rodimova. "Information-computational system: atmospheric chemistry". W Sixth International Symposium on Atmospheric and Ocean Optics, redaktorzy Gennadii G. Matvienko i Vladimir P. Lukin. SPIE, 1999. http://dx.doi.org/10.1117/12.370548.
Pełny tekst źródłaWimmer, Erich. "Industrial trends in computational chemistry". W The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47841.
Pełny tekst źródłaYeguas, Violeta, i Ruben Casado. "Big Data issues in Computational Chemistry". W 2014 2nd International Conference on Future Internet of Things and Cloud (FiCloud). IEEE, 2014. http://dx.doi.org/10.1109/ficloud.2014.69.
Pełny tekst źródłaClementi, Enrico, i Giorgina Corongiu. "Extrapolations on Ab Initio Computational Chemistry". W Advances in biomolecular simulations. AIP, 1991. http://dx.doi.org/10.1063/1.41358.
Pełny tekst źródłaSukumar, N. "Cellular automata in computational quantum chemistry". W The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47854.
Pełny tekst źródłaInfante, Ivan. "Computational Chemistry for Colloidal Semiconductor Nanocrystals". W Online school on Fundamentals of Semiconductive Quantum Dots. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.qdsschool.2021.013.
Pełny tekst źródłaTill, Stephen, Andrew Heaton, David Payne, Corinne Stone i Martin Swan. "Computational chemistry studies of phenolic resin". W 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-182.
Pełny tekst źródłaRaporty organizacyjne na temat "Theoreical and Computational Chemistry"
Author, Not Given. Computational quantum chemistry website. Office of Scientific and Technical Information (OSTI), sierpień 1997. http://dx.doi.org/10.2172/7376091.
Pełny tekst źródłaHarrison, R. J., R. Shepard i A. F. Wagner. Computational chemistry on parallel computers. Office of Scientific and Technical Information (OSTI), marzec 1994. http://dx.doi.org/10.2172/10132716.
Pełny tekst źródłaJ. Thomas Mckinnon. Computational Chemistry and Reaction Engineering Workbench. Office of Scientific and Technical Information (OSTI), grudzień 2003. http://dx.doi.org/10.2172/820562.
Pełny tekst źródłaAlexeev, Yuri. Scalable Computational Chemistry: New Developments and Applications. Office of Scientific and Technical Information (OSTI), styczeń 2002. http://dx.doi.org/10.2172/806585.
Pełny tekst źródłaBasak, Subhash C. Predicting Chemical Toxicity from Proteomics and Computational Chemistry. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2008. http://dx.doi.org/10.21236/ada576221.
Pełny tekst źródłaBrown, Katrina, Kim Ferris i George Irving. Computational Chemistry for the High Power Microwave Initiative. Fort Belvoir, VA: Defense Technical Information Center, październik 1999. http://dx.doi.org/10.21236/ada376400.
Pełny tekst źródłaHarrison, Robert J., David E. Bernholdt, Bruce E. Bursten, Wibe A. De Jong, David A. Dixon, Kenneth G. Dyall, Walter V. Ermler i in. Computational Chemistry for Nuclear Waste Characterization and Processing: Relativistic Quantum Chemistry of Actinides. Office of Scientific and Technical Information (OSTI), sierpień 2002. http://dx.doi.org/10.2172/15010139.
Pełny tekst źródłaMillis, Andrew. Many Body Methods from Chemistry to Physics: Novel Computational Techniques for Materials-Specific Modelling: A Computational Materials Science and Chemistry Network. Office of Scientific and Technical Information (OSTI), listopad 2016. http://dx.doi.org/10.2172/1332662.
Pełny tekst źródłaRudd, R., i M. McElfresh. 2004 LLNL Computational Chemistry and Materials Science Summer Institute. Office of Scientific and Technical Information (OSTI), listopad 2004. http://dx.doi.org/10.2172/15014752.
Pełny tekst źródłaGuest, M. F., E. Apra i D. E. Bernholdt. High performance computational chemistry: Towards fully distributed parallel algorithms. Office of Scientific and Technical Information (OSTI), lipiec 1994. http://dx.doi.org/10.2172/10162988.
Pełny tekst źródła