Gotowa bibliografia na temat „Testing Machine Company”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Testing Machine Company”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Testing Machine Company"
Sibarani, Prince, Tanika D. Sofianti i Aditya Tirta Pratama. "Improving the Overall Equipment Effectiveness (OEE) of Drum Testing Machine in Laboratory of Tire Manufacturing Using FMEA and PFMEA". Proceedings of The Conference on Management and Engineering in Industry 3, nr 3 (4.08.2021): 56–61. http://dx.doi.org/10.33555/cmei.v3i3.84.
Pełny tekst źródłaC. M. Nalayani, Thanga Akilan .V, Hariharan .S, SaranArulnathan i Venkatanathan .S. "Placement Analysis for Students using Machine Learning". September 2023 5, nr 3 (wrzesień 2023): 223–37. http://dx.doi.org/10.36548/jitdw.2023.3.001.
Pełny tekst źródłaMustika, Nadya Intan, Bagus Nenda i Dona Ramadhan. "Machine Learning Algorithms in Fraud Detection: Case Study on Retail Consumer Financing Company". Asia Pacific Fraud Journal 6, nr 2 (30.12.2021): 213. http://dx.doi.org/10.21532/apfjournal.v6i2.216.
Pełny tekst źródłaPorter, S. J., J. P. Chadwick, M. G. Owen i S. J. Page. "Evaluation of seven ultrasonic machines for estimating carcase composition in live bulls". Proceedings of the British Society of Animal Production (1972) 1988 (marzec 1988): 46. http://dx.doi.org/10.1017/s0308229600016846.
Pełny tekst źródłaCamille Merlin S. Tan i Lawrence Y. Materum. "Cleanroom Dashboard System for Time-Reduction Checking of Disk Tester Availability". Journal of Advanced Research in Applied Sciences and Engineering Technology 43, nr 2 (17.04.2024): 237–57. http://dx.doi.org/10.37934/araset.43.2.237257.
Pełny tekst źródłaSutrisno, Niantoro, Rizka Faradila, Rizka Faradila, Edison P. Sirait i Edison P. Sirait. "PENGARUH KAPASITAS MESIN DAN JUMLAH PERSEDIAAN BAHAN BAKU TERHADAP VOLUME PRODUKSI". Jurnal Akuntansi dan Bisnis 10, nr 01 (25.06.2024): 15. http://dx.doi.org/10.47686/jab.v10i01.680.
Pełny tekst źródłaQu, Ju Bao, i Shu Juan Wang. "Intelligent Quality Control System Based on Machine Vision of Multi-Line". Applied Mechanics and Materials 513-517 (luty 2014): 1192–96. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.1192.
Pełny tekst źródłaSiti Nur Syamimi Mat Zain, Nor Azuana Ramli i Rose Adzreen Adnan. "CUSTOMER SENTIMENT ANALYSIS THROUGH SOCIAL MEDIA FEEDBACK: A CASE STUDY ON TELECOMMUNICATION COMPANY". International Journal of Humanities Technology and Civilization 7, nr 2 (14.12.2022): 54–61. http://dx.doi.org/10.15282/ijhtc.v7i2.8739.
Pełny tekst źródłaSrisattayakul, Parinya, Charnnarong Saikaew, Anurat Wisitsoraat i Naphatara Intanon. "Influence of MoN Sputtering Coating on Wear Resistance of a Fishing Net-Weaving Machine Component". Advanced Materials Research 1016 (sierpień 2014): 80–84. http://dx.doi.org/10.4028/www.scientific.net/amr.1016.80.
Pełny tekst źródłaWeick, S., M. Grosse i M. Steinbrueck. "The INCHAMEL facility – a new device for in-situ neutron investigations under defined temperatures with applicable mechanical load". Journal of Physics: Conference Series 2605, nr 1 (1.09.2023): 012035. http://dx.doi.org/10.1088/1742-6596/2605/1/012035.
Pełny tekst źródłaRozprawy doktorskie na temat "Testing Machine Company"
Olivier, Louis Petrus. "Psychomotor ability and learning potential as predictors of driver and machine operator performance in a road construction company". Diss., 2015. http://hdl.handle.net/10500/19687.
Pełny tekst źródłaIndustrial and Organisational Psychology
M.A. (Industrial and Organisational Psychology)
Części książek na temat "Testing Machine Company"
Abaei, Golnoush, i Ali Selamat. "Important Issues in Software Fault Prediction". W Advances in Systems Analysis, Software Engineering, and High Performance Computing, 510–39. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-6026-7.ch023.
Pełny tekst źródła"Front Matter". W Pendulum Impact Machines: Procedures and Specimens for Verification, FM1—FM10. ASTM International100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 1995. http://dx.doi.org/10.1520/stp14652s.
Pełny tekst źródłaAnand, Mansimar, Irtibat Shaukat, Harnoor Kaler, Jai Narula i Prashant Singh Rana. "Hybrid Model for the Customer Churn Prediction". W SCRS Proceedings of International Conference of Undergraduate Students, 85–94. Soft Computing Research Society, 2023. http://dx.doi.org/10.52458/978-81-95502-01-1-9.
Pełny tekst źródłaKanatani, Kenichi. "Statistical Analysis of Geometric Computation, 2". W Geometric Computation for Machine Vision, 318–63. Oxford University PressOxford, 1993. http://dx.doi.org/10.1093/oso/9780198563853.003.0010.
Pełny tekst źródłaZhang, Xiang. "Financial Data Anomaly Recognition Model Based on Improved Support Vector Machine". W Advances in Transdisciplinary Engineering. IOS Press, 2024. http://dx.doi.org/10.3233/atde231272.
Pełny tekst źródłaIwata, Kazunori, Toyoshiro Nakashima, Yoshiyuki Anan i Naohiro Ishii. "Machine Learning Classification to Effort Estimation for Embedded Software Development Projects". W Research Anthology on Agile Software, Software Development, and Testing, 1652–65. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-3702-5.ch078.
Pełny tekst źródłaPai, Srinivasa P., i Nagabhushana T. N. "Tool Condition Monitoring Using Artificial Neural Network Models". W Handbook of Research on Emerging Trends and Applications of Machine Learning, 550–76. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-9643-1.ch026.
Pełny tekst źródłaPai, Srinivasa P., i Nagabhushana T. N. "Tool Condition Monitoring Using Artificial Neural Network Models". W Research Anthology on Artificial Neural Network Applications, 400–426. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-2408-7.ch019.
Pełny tekst źródłaDeo, Ravinesh C., Sujan Ghimire, Nathan J. Downs i Nawin Raj. "Optimization of Windspeed Prediction Using an Artificial Neural Network Compared With a Genetic Programming Model". W Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms, 116–47. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8048-6.ch007.
Pełny tekst źródłaDeo, Ravinesh C., Sujan Ghimire, Nathan J. Downs i Nawin Raj. "Optimization of Windspeed Prediction Using an Artificial Neural Network Compared With a Genetic Programming Model". W Advances in Computational Intelligence and Robotics, 328–59. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-4766-2.ch015.
Pełny tekst źródłaStreszczenia konferencji na temat "Testing Machine Company"
Abbas, Raafat, Aaron Simon, Doug Dunbar, Rodrigo Serrano, Andrew Creegan i Ernie Prochaska. "Automatic Driller Optimization Application Using Machine Learning and Artificial Intelligence Drives Consistent Performance in an Operator’s West Texas Drilling Program". W SPE Annual Technical Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/215087-ms.
Pełny tekst źródłaValdiero, Antonio C., Ronei O. Ziech, Mauricio S. Pinto, Ivan J. Mantovani i Luiz A. Rasia. "Development and Construction of an Instrumentalized Workbench With a Hydraulic Motor for Farm Machine Testing". W 9th FPNI Ph.D. Symposium on Fluid Power. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fpni2016-1552.
Pełny tekst źródłaGerchman, Mark Craig. "The Single Point Diamond Turning (SPDT) Of Optical Surfaces For Visible Wavelength Applications". W Optical Fabrication and Testing. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oft.1990.jtuc3.
Pełny tekst źródłaAl Radhi, Mohammed, Fernando Angel Bermudez, Wael Al Madhoun, Khaled Al Blooshi, Noor Nasser Al Nahhas i Mohammed Nazeih Shono. "Unlocking the Potential of Electrical Submersible Pumps: the Successful Testing and Deployment of a Real-Time Artificially Intelligent System, for Failure Prediction, Run Life Extension, and Production Optimization". W SPE Symposium: Artificial Intelligence - Towards a Resilient and Efficient Energy Industry. SPE, 2021. http://dx.doi.org/10.2118/208647-ms.
Pełny tekst źródłaBermudez, Fernando, Noor Al Nahhas, Hafsa Yazdani, Michael LeTan i Mohammed Shono. "Unlocking the Potential of Electrical Submersible Pumps: The Successful Testing and Deployment of a Real-Time Artificially Intelligent System, for Failure Prediction, Run Life Extension, and Production Optimization". W Abu Dhabi International Petroleum Exhibition & Conference. SPE, 2021. http://dx.doi.org/10.2118/207839-ms.
Pełny tekst źródłaMiller, Richard J., i Reginald D. Conner. "Field Validation Testing of New HEAT™ Steam Turbine". W ASME 2006 Power Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/power2006-88202.
Pełny tekst źródłaBlack, J. T. "Lean Manufacturing Cell Design". W ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0773.
Pełny tekst źródłaKasim, Fadzlin Hasani, Nurul Nadhira Idris, Saeed Majidaie, Budi Priyatna Kantaatmadja, Numair Ahmed Siddiqui, Akhmal Sidek i Nur Aqilah Nabila Yahaya. "The Utilization of Machine Learning Method to Predict Hydrocarbon Flow Rate for a Better Reservoir Potential Evaluation". W International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-22025-ms.
Pełny tekst źródłaLiao, Leo, i Ang Li. "An Intelligent System to Automate the Inquery in Logistics Industry using AI and Machine Learning". W 8th International Conference on Natural Language Processing (NATP 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.120109.
Pełny tekst źródłaAnderson, Joel, Nathan Switzner, Jeffrey Kornuta i Peter Veloo. "Incorporating Measurement Uncertainty Into Machine Learning-Based Grade Predictions". W 2022 14th International Pipeline Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/ipc2022-87347.
Pełny tekst źródła