Gotowa bibliografia na temat „TESTING DATA”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „TESTING DATA”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "TESTING DATA"
Kumar, Gagan, i Vinay Chopra. "Automatic Test Data Generation for Basis Path Testing". Indian Journal Of Science And Technology 15, nr 41 (5.11.2022): 2151–61. http://dx.doi.org/10.17485/ijst/v15i41.1503.
Pełny tekst źródłaGolfarelli, Matteo, i Stefano Rizzi. "Data Warehouse Testing". International Journal of Data Warehousing and Mining 7, nr 2 (kwiecień 2011): 26–43. http://dx.doi.org/10.4018/jdwm.2011040102.
Pełny tekst źródłaUzych, Leo. "Genetic Testing Data". Journal of Occupational & Environmental Medicine 38, nr 1 (styczeń 1996): 13–14. http://dx.doi.org/10.1097/00043764-199601000-00001.
Pełny tekst źródłaRischitelli, Gary. "Genetic Testing Data". Journal of Occupational & Environmental Medicine 38, nr 1 (styczeń 1996): 14. http://dx.doi.org/10.1097/00043764-199601000-00002.
Pełny tekst źródłaWalczak, Przemysław, i Jadwiga Daszyńska-Daszkiewicz. "Testing microphysics data". Proceedings of the International Astronomical Union 9, S301 (sierpień 2013): 221–28. http://dx.doi.org/10.1017/s1743921313014361.
Pełny tekst źródłaSurname, Bob. "Testing CrossMark data". Journal of CrossMark Testing 1, nr 2 (2011): 20. http://dx.doi.org/10.5555/cm_test_2.
Pełny tekst źródłaHarrold, Mary Jean, i Mary Lou Soffa. "Interprocedual data flow testing". ACM SIGSOFT Software Engineering Notes 14, nr 8 (grudzień 1989): 158–67. http://dx.doi.org/10.1145/75309.75327.
Pełny tekst źródłaKrueger, Alan B. "Stress Testing Economic Data". Business Economics 45, nr 2 (kwiecień 2010): 110–15. http://dx.doi.org/10.1057/be.2010.4.
Pełny tekst źródłaFaitelson, David, i Shmuel Tyszberowicz. "Data refinement based testing". International Journal of System Assurance Engineering and Management 2, nr 2 (czerwiec 2011): 144–54. http://dx.doi.org/10.1007/s13198-011-0060-y.
Pełny tekst źródłaRay, L. Bryan. "Testing biochemical data by simulation". Science 369, nr 6502 (23.07.2020): 387.10–389. http://dx.doi.org/10.1126/science.369.6502.387-j.
Pełny tekst źródłaRozprawy doktorskie na temat "TESTING DATA"
Araujo, Roberto Paulo Andrioli de. "Scalable data-flow testing". Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/100/100131/tde-14112014-155259/.
Pełny tekst źródłaTeste de fluxo de dados (TFD) foi introduzido há mais de trinta anos com o objetivo de criar uma avaliação mais abrangente da estrutura dos programas. TFD exige testes que percorrem caminhos nos quais a atribuição de valor a uma variável (definição) e a subsequente referência a esse valor (uso) são verificados. Essa relação é denominada associação definição-uso. Enquanto as ferramentas de teste de fluxo de controle são capazes de lidar com sistemas compostos de programas grandes e que executam durante bastante tempo, as ferramentas de TFD não têm obtido o mesmo sucesso. Esta situação é, em parte, devida aos custos associados ao rastreamento de associações definição-uso em tempo de execução. Recentemente, foi proposto um algoritmo --- chamado \\textit (BA) --- que usa vetores de bits e operações bit a bit para monitorar associações definição-uso em tempo de execução. Esta pesquisa apresenta a implementação de BA para programas compilados em Java. Abordagens anteriores são capazes de lidar com programas pequenos e de médio porte com altas penalidades em termos de execução e memória. Os resultados experimentais mostram que, usando BA, é possível utilizar TFD para verificar sistemas com mais de 250 mil linhas de código e 300 mil associações definição-uso. Além disso, para vários programas, a penalidade de execução imposta por BA é comparável àquela imposta por uma popular ferramenta de teste de fluxo de controle.
McGaughey, Karen J. "Variance testing with data depth /". Search for this dissertation online, 2003. http://wwwlib.umi.com/cr/ksu/main.
Pełny tekst źródłaKhan, M. Shahan Ali, i Ahmad ElMadi. "Data Warehouse Testing : An Exploratory Study". Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4767.
Pełny tekst źródłaShahan (+46 736 46 81 54), Ahmad (+46 727 72 72 11)
Andersson, Johan, i Mats Burberg. "Testing For Normality of Censored Data". Thesis, Uppsala universitet, Statistiska institutionen, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-253889.
Pełny tekst źródłaSestok, Charles K. (Charles Kasimer). "Data selection in binary hypothesis testing". Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/16613.
Pełny tekst źródłaIncludes bibliographical references (p. 119-123).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Traditionally, statistical signal processing algorithms are developed from probabilistic models for data. The design of the algorithms and their ultimate performance depend upon these assumed models. In certain situations, collecting or processing all available measurements may be inefficient or prohibitively costly. A potential technique to cope with such situations is data selection, where a subset of the measurements that can be collected and processed in a cost-effective manner is used as input to the signal processing algorithm. Careful evaluation of the selection procedure is important, since the probabilistic description of distinct data subsets can vary significantly. An algorithm designed for the probabilistic description of a poorly chosen data subset can lose much of the potential performance available to a well-chosen subset. This thesis considers algorithms for data selection combined with binary hypothesis testing. We develop models for data selection in several cases, considering both random and deterministic approaches. Our considerations are divided into two classes depending upon the amount of information available about the competing hypotheses. In the first class, the target signal is precisely known, and data selection is done deterministically. In the second class, the target signal belongs to a large class of random signals, selection is performed randomly, and semi-parametric detectors are developed.
by Charles K. Sestok, IV.
Ph.D.
Li, Yan. "Multiple Testing in Discrete Data Setting". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1276747166.
Pełny tekst źródłaClements, Nicolle. "Multiple Testing in Grouped Dependent Data". Diss., Temple University Libraries, 2013. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/253695.
Pełny tekst źródłaPh.D.
This dissertation is focused on multiple testing procedures to be used in data that are naturally grouped or possess a spatial structure. We propose `Two-Stage' procedure to control the False Discovery Rate (FDR) in situations where one-sided hypothesis testing is appropriate, such as astronomical source detection. Similarly, we propose a `Three-Stage' procedure to control the mixed directional False Discovery Rate (mdFDR) in situations where two-sided hypothesis testing is appropriate, such as vegetation monitoring in remote sensing NDVI data. The Two and Three-Stage procedures have provable FDR/mdFDR control under certain dependence situations. We also present the Adaptive versions which are examined under simulation studies. The `Stages' refer to testing hypotheses both group-wise and individually, which is motivated by the belief that the dependencies among the p-values associated with the spatially oriented hypotheses occur more locally than globally. Thus, these `Staged' procedures test hypotheses in groups that incorporate the local, unknown dependencies of neighboring p-values. If a group is found significant, further investigation is done to the individual p-values within that group. For the vegetation monitoring data, we extend the investigation by providing some spatio-temporal models and forecasts to some regions where significant change was detected through the multiple testing procedure.
Temple University--Theses
Chandorkar, Chaitrali Santosh. "Data Driven Feed Forward Adaptive Testing". PDXScholar, 2013. https://pdxscholar.library.pdx.edu/open_access_etds/1049.
Pełny tekst źródła林旭明 i Yuk-ming Lam. "Automation in soil testing". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1990. http://hub.hku.hk/bib/B31209774.
Pełny tekst źródłaHu, Zongliang. "New developments in multiple testing and multivariate testing for high-dimensional data". HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/534.
Pełny tekst źródłaKsiążki na temat "TESTING DATA"
Held, Gilbert. Data communications: Testing and troubleshooting. Indianapolis: Howard W. Sams, 1989.
Znajdź pełny tekst źródłaLibrary of Congress. Congressional Research Service i United States. Federal Bureau of Investitgation, red. DNA testing and data banking. Hauppauge, N.Y: Nova Science Publishers, 2011.
Znajdź pełny tekst źródłaHeld, Gilbert. Data communications testing and troubleshooting. Indianapolis, Ind., USA: H.W. Sams, 1988.
Znajdź pełny tekst źródłaHeld, Gilbert. Data communications testing and troubleshooting. Wyd. 2. New York: Van Nostrand Reinhold, 1992.
Znajdź pełny tekst źródłaSaeed, Athar. Accelerated pavement testing: Data guidelines. Washington, D.C: Transportation Research Board, National Research Council, 2003.
Znajdź pełny tekst źródłaS, Page Gregory, Welge H. Robert i Ames Research Center, red. Propfan experimental data analysis. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1987.
Znajdź pełny tekst źródłaFrieden, B. Roy. Probability, Statistical Optics, and Data Testing. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-97289-8.
Pełny tekst źródłaFrieden, B. Roy. Probability, Statistical Optics, and Data Testing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56699-8.
Pełny tekst źródłaDevelopment, North Atlantic Treaty Organization Advisory Group for Aerospace Research and. Advanced aeroservoelastic testing and data analysis. Neuilly-sur-Seine, France: AGARD, 1995.
Znajdź pełny tekst źródłaAdvisory Group for Aerospace Research and Development. Structures and Materials Panel., red. Advanced aeroservoelastic testing and data analysis. Neuilly sur Seine: Agard, 1995.
Znajdź pełny tekst źródłaCzęści książek na temat "TESTING DATA"
Anderson, Alan J. B. "Testing hypotheses". W Interpreting Data, 65–84. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-3192-4_5.
Pełny tekst źródłaCurtis, Kevin, Lisa Dhar, Alan Hoskins, Mark Ayres i Edeline Fotheringham. "Media Testing". W Holographic Data Storage, 151–83. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470666531.ch8.
Pełny tekst źródłaHartigan, John A. "Testing for Antimodes". W Data Analysis, 169–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-58250-9_14.
Pełny tekst źródłaBrandt, Siegmund. "Testing Statistical Hypotheses". W Data Analysis, 175–207. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03762-2_8.
Pełny tekst źródłaBrandt, Siegmund. "Testing Statistical Hypotheses". W Data Analysis, 212–47. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1446-5_8.
Pełny tekst źródłaSchrader, Steffen Haakon. "Flight Test Data Comparison". W Flight Testing, 159–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-63218-5_7.
Pełny tekst źródłaSrinivasan, John David. "Urine Testing". W Data Interpretation in Anesthesia, 175–79. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55862-2_32.
Pełny tekst źródłade Armendi, Alberto J., i Gulshan Doulatram. "Drug Testing". W Data Interpretation in Anesthesia, 181–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55862-2_33.
Pełny tekst źródłaKline, Kevin, Denis McDowell, Dustin Dorsey i Matt Gordon. "Data Validation Testing". W Pro Database Migration to Azure, 285–94. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-8230-4_11.
Pełny tekst źródłaLebanon, Guy, i Mohamed El-Geish. "Essential Knowledge: Testing". W Computing with Data, 415–39. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98149-9_11.
Pełny tekst źródłaStreszczenia konferencji na temat "TESTING DATA"
Cho, Jae-Han, i Lee-Sub Lee. "Testing Algebra for Data-driven Testing". W AST 2014. Science & Engineering Research Support soCiety, 2014. http://dx.doi.org/10.14257/astl.2014.45.17.
Pełny tekst źródłaElGamal, Neveen, Ali ElBastawissy i Galal Galal-Edeen. "Data warehouse testing". W the Joint EDBT/ICDT 2013 Workshops. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2457317.2457319.
Pełny tekst źródłaVivanti, Mattia. "Dynamic data-flow testing". W ICSE '14: 36th International Conference on Software Engineering. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2591062.2591079.
Pełny tekst źródłaDubey, Harsh Kumar, Prashant Kumar, Rahul Singh, Santosh K. Yadav i Rama Shankar Yadav. "Automated data flow testing". W 2012 Students Conference on Engineering and Systems (SCES). IEEE, 2012. http://dx.doi.org/10.1109/sces.2012.6199072.
Pełny tekst źródłaHarrold, M., i M. Soffa. "Interprocedual data flow testing". W the ACM SIGSOFT '89 third symposium. New York, New York, USA: ACM Press, 1989. http://dx.doi.org/10.1145/75308.75327.
Pełny tekst źródłaBruno, John L., Phillip B. Gibbons i Steven Phillips. "Testing concurrent data structures". W the fifteenth annual ACM symposium. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/248052.248074.
Pełny tekst źródłaPunn, Narinder Singh, Sonali Agarwal, M. Syafrullah i Krisna Adiyarta. "Testing Big Data Application". W 2019 6th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI). IEEE, 2019. http://dx.doi.org/10.23919/eecsi48112.2019.8976972.
Pełny tekst źródłaMcDonald, Darren, i Kyle Gardner. "Static VMCA Demonstrations: Safety and Data Implications". W 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-2856.
Pełny tekst źródłaAi, Chiayu, i James C. Wyant. "Data Reduction for Phase Shift Interferometry". W Optical Fabrication and Testing. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oft.1986.tha11.
Pełny tekst źródła"TESTING IN PARALLEL - A Need for Practical Regression Testing". W 5th International Conference on Software and Data Technologies. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0003041503440348.
Pełny tekst źródłaRaporty organizacyjne na temat "TESTING DATA"
McCrosson, F. J. ENDF/B Thermal Data Testing. Office of Scientific and Technical Information (OSTI), październik 2001. http://dx.doi.org/10.2172/787923.
Pełny tekst źródłaRamsey, Lori J., i Karen L. Fertig. Officer Standardized Educational Testing Data. Fort Belvoir, VA: Defense Technical Information Center, listopad 1992. http://dx.doi.org/10.21236/ada259393.
Pełny tekst źródłaClarke, Jerry, Kenneth Renard i Brian Panneton. Data Analytics and Visualization for Large Army Testing Data. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2013. http://dx.doi.org/10.21236/ada591620.
Pełny tekst źródłaK. M. Garcia. Supercritical Water Oxidation Data Acquisition Testing. Office of Scientific and Technical Information (OSTI), sierpień 1996. http://dx.doi.org/10.2172/768865.
Pełny tekst źródłaChandorkar, Chaitrali. Data Driven Feed Forward Adaptive Testing. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.1049.
Pełny tekst źródłaWu, Jin Chu, i Raghu N. Kacker. Standard Errors and Significance Testing in Data Analysis for Testing Classifiers. National Institute of Standards and Technology, lipiec 2021. http://dx.doi.org/10.6028/nist.ir.8383.
Pełny tekst źródłaCawley, John, Euna Han, Jiyoon (June) Kim i Edward Norton. Testing for Peer Effects Using Genetic Data. Cambridge, MA: National Bureau of Economic Research, sierpień 2017. http://dx.doi.org/10.3386/w23719.
Pełny tekst źródłaKahler, Albert Comstock. Data Testing CIELO Evaluations with ICSBEP Benchmarks. Office of Scientific and Technical Information (OSTI), marzec 2016. http://dx.doi.org/10.2172/1241649.
Pełny tekst źródłaKahler, Albert Comstock III. Criticality Data Testing with CIELO Candidate Evaluations. Office of Scientific and Technical Information (OSTI), marzec 2015. http://dx.doi.org/10.2172/1172830.
Pełny tekst źródłaP. Dixon. Seepage Calibration Model and Seepage Testing Data. Office of Scientific and Technical Information (OSTI), luty 2004. http://dx.doi.org/10.2172/837560.
Pełny tekst źródła