Artykuły w czasopismach na temat „Ternary Blend Organic Solar Cells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Ternary Blend Organic Solar Cells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Weng, Kangkang, Chao Li, Pengqing Bi, Hwa Sook Ryu, Yikun Guo, Xiaotao Hao, Dahui Zhao, Weiwei Li, Han Young Woo i Yanming Sun. "Ternary organic solar cells based on two compatible PDI-based acceptors with an enhanced power conversion efficiency". Journal of Materials Chemistry A 7, nr 8 (2019): 3552–57. http://dx.doi.org/10.1039/c8ta12034j.
Pełny tekst źródłaNam, Minwoo, Jaehong Yoo, Yunjae Park, Hye Yeon Noh, Yongkook Park, Junhee Cho, Jung-A. Kim i in. "Ternary blend organic solar cells with improved morphological stability". Journal of Materials Chemistry A 7, nr 16 (2019): 9698–707. http://dx.doi.org/10.1039/c9ta00382g.
Pełny tekst źródłaDoumon, Nutifafa Y., Félix V. Houard, Jingjin Dong, Panagiotis Christodoulis, Mikhail V. Dryzhov, Giuseppe Portale i L. Jan Anton Koster. "Improved photostability in ternary blend organic solar cells: the role of [70]PCBM". Journal of Materials Chemistry C 7, nr 17 (2019): 5104–11. http://dx.doi.org/10.1039/c8tc06621c.
Pełny tekst źródłaYang, Jianzhong, Wenhan He, Kimberly Denman, Ying-Bing Jiang i Yang Qin. "A molecular breakwater-like tetrapod for organic solar cells". Journal of Materials Chemistry A 3, nr 5 (2015): 2108–19. http://dx.doi.org/10.1039/c4ta05405a.
Pełny tekst źródłaXu, Weidong, i Feng Gao. "The progress and prospects of non-fullerene acceptors in ternary blend organic solar cells". Materials Horizons 5, nr 2 (2018): 206–21. http://dx.doi.org/10.1039/c7mh00958e.
Pełny tekst źródłaLi, Hongfei, Zhenhua Yang, Cheng Pan, Naisheng Jiang, Sushil K. Satija, Di Xu, Dilip Gersappe, Chang-Yong Nam i Miriam H. Rafailovich. "A new strategy to engineer polymer bulk heterojunction solar cells with thick active layers via self-assembly of the tertiary columnar phase". Nanoscale 9, nr 32 (2017): 11511–22. http://dx.doi.org/10.1039/c7nr03789a.
Pełny tekst źródłaXiao, Liangang, Ke Gao, Yangdong Zhang, Xuebin Chen, Lintao Hou, Yong Cao i Xiaobin Peng. "A complementary absorption small molecule for efficient ternary organic solar cells". Journal of Materials Chemistry A 4, nr 14 (2016): 5288–93. http://dx.doi.org/10.1039/c6ta00783j.
Pełny tekst źródłaBenten, Hiroaki, Takaya Nishida, Daisuke Mori, Huajun Xu, Hideo Ohkita i Shinzaburo Ito. "High-performance ternary blend all-polymer solar cells with complementary absorption bands from visible to near-infrared wavelengths". Energy & Environmental Science 9, nr 1 (2016): 135–40. http://dx.doi.org/10.1039/c5ee03460d.
Pełny tekst źródłaFarinhas, Joana, Ricardo Oliveira, Quirina Ferreira, Jorge Morgado i Ana Charas. "Enhanced Efficiency of PTB7 : PC61BM Organic Solar Cells by Adding a Low Efficient Polymer Donor". International Journal of Photoenergy 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/4501758.
Pełny tekst źródłaLiao, Chentong, Ming Zhang, Xiaopeng Xu, Feng Liu, Ying Li i Qiang Peng. "Green solvent-processed efficient non-fullerene organic solar cells enabled by low-bandgap copolymer donors with EDOT side chains". Journal of Materials Chemistry A 7, nr 2 (2019): 716–26. http://dx.doi.org/10.1039/c8ta10882j.
Pełny tekst źródłaDai, Shuixing, Sreelakshmi Chandrabose, Jingming Xin, Tengfei Li, Kai Chen, Peiyao Xue, Kuan Liu i in. "High-performance organic solar cells based on polymer donor/small molecule donor/nonfullerene acceptor ternary blends". Journal of Materials Chemistry A 7, nr 5 (2019): 2268–74. http://dx.doi.org/10.1039/c8ta11637g.
Pełny tekst źródłaZhong, Lian, Haijun Bin, Yongxi Li, Ming Zhang, Jianqiu Xu, Xiaojun Li, He Huang i in. "Ternary non-fullerene polymer solar cells with a high crystallinity n-type organic semiconductor as the second acceptor". Journal of Materials Chemistry A 6, nr 48 (2018): 24814–22. http://dx.doi.org/10.1039/c8ta08406h.
Pełny tekst źródłaGao, Yaxin, Chujun Zhang i Shu Kong So. "Heat transfer in binary and ternary bulk heterojunction solar cells". Applied Physics Letters 120, nr 14 (4.04.2022): 143301. http://dx.doi.org/10.1063/5.0080456.
Pełny tekst źródłaWang, Qiuning, Yiwen Hou, Shasha Shi, Tao Yang, Ciyuan Huang, Shangfei Yao, Ziyang Zhang i in. "Multicomponent Solar Cells with High Fill Factors and Efficiencies Based on Non-Fullerene Acceptor Isomers". Molecules 27, nr 18 (7.09.2022): 5802. http://dx.doi.org/10.3390/molecules27185802.
Pełny tekst źródłaZhang, Shuhua, Lijian Zuo, Jiehuan Chen, Zhongqiang Zhang, Jiangquan Mai, Tsz-Ki Lau, Xinhui Lu, Minmin Shi i Hongzheng Chen. "Improved photon-to-electron response of ternary blend organic solar cells with a low band gap polymer sensitizer and interfacial modification". Journal of Materials Chemistry A 4, nr 5 (2016): 1702–7. http://dx.doi.org/10.1039/c5ta09727d.
Pełny tekst źródłaWang, Meng. "Study on Ternary Blend Organic Solar Cells Based on Multiple Non-fullerene Acceptors". MATEC Web of Conferences 380 (2023): 01014. http://dx.doi.org/10.1051/matecconf/202338001014.
Pełny tekst źródłaHu, Zhenghao, Jian Wang, Xiaoling Ma, Jinhua Gao, Chunyu Xu, Xuelin Wang, Xiaoli Zhang, Zhi Wang i Fujun Zhang. "Semitransparent organic solar cells exhibiting 13.02% efficiency and 20.2% average visible transmittance". Journal of Materials Chemistry A 9, nr 11 (2021): 6797–804. http://dx.doi.org/10.1039/d1ta01135a.
Pełny tekst źródłaSchlachter, Adrien, Gabriel Marineau-Plante, Pierre D. Harvey, Anupam Agrawal i Ganesh D. Sharma. "Efficient ternary bulk heterojunction organic solar cells using a low-cost nonfullerene acceptor". Journal of Materials Chemistry C 10, nr 11 (2022): 4372–82. http://dx.doi.org/10.1039/d1tc05653k.
Pełny tekst źródłaKadem, Burak, Aseel Hassan, Meltem Göksel, Tamara Basova, Ahmet Şenocak, Erhan Demirbaş i Mahmut Durmuş. "High performance ternary solar cells based on P3HT:PCBM and ZnPc-hybrids". RSC Advances 6, nr 96 (2016): 93453–62. http://dx.doi.org/10.1039/c6ra17590b.
Pełny tekst źródłaCheng, Pei, Qinqin Shi i Xiaowei Zhan. "Ternary Blend Organic Solar Cells Based on P3HT/TT-TTPA/PC61BM". Acta Chimica Sinica 73, nr 3 (2015): 252. http://dx.doi.org/10.6023/a14080607.
Pełny tekst źródłaWang, Yanbin, Changlong Zhuang, Yawen Fang, Huang Yu i Biaobing Wang. "Various roles of dye molecules in organic ternary blend solar cells". Dyes and Pigments 176 (maj 2020): 108231. http://dx.doi.org/10.1016/j.dyepig.2020.108231.
Pełny tekst źródłaStreet, Robert A., Petr P. Khlyabich, Andrey E. Rudenko i Barry C. Thompson. "Electronic States in Dilute Ternary Blend Organic Bulk Heterojunction Solar Cells". Journal of Physical Chemistry C 118, nr 46 (5.11.2014): 26569–76. http://dx.doi.org/10.1021/jp5088724.
Pełny tekst źródłaWang, Zhen, Guangchao Han, Lingyun Zhu, Yuan Guo, Yuanping Yi, Zhigang Shuai i Zhixiang Wei. "Suppressing charge recombination in small-molecule ternary organic solar cells by modulating donor–acceptor interfacial arrangements". Physical Chemistry Chemical Physics 20, nr 38 (2018): 24570–76. http://dx.doi.org/10.1039/c8cp05178j.
Pełny tekst źródłaQin, Dashan, Pei Cheng, Yifan Wang, Yan Fan i Xiaowei Zhan. "Electron-transporting third component modifying cathode for simplified inverted ternary blend solar cells". Journal of Materials Chemistry C 4, nr 5 (2016): 1051–56. http://dx.doi.org/10.1039/c5tc03769g.
Pełny tekst źródłaLee, Taeho, Sora Oh, Shafket Rasool, Chang Eun Song, Dongwook Kim, Sang Kyu Lee, Won Suk Shin i Eunhee Lim. "Non-halogenated solvent-processed ternary-blend solar cells via alkyl-side-chain engineering of a non-fullerene acceptor and their application in large-area devices". Journal of Materials Chemistry A 8, nr 20 (2020): 10318–30. http://dx.doi.org/10.1039/d0ta00947d.
Pełny tekst źródłaBahtiar, Ayi, Siti Halimah Tusaddiah, Wendy Paramandhita S. Mustikasari, Lusi Safriani, Mariah Kartawidjaja, Kei Kanazawa, Ippei Enokida, Yukio Furukawa i Isao Watanabe. "Optical, Structural and Morphological Properties of Ternary Thin Film Blend of P3HT:PCBM:ZnO Nanoparticles". Materials Science Forum 827 (sierpień 2015): 119–24. http://dx.doi.org/10.4028/www.scientific.net/msf.827.119.
Pełny tekst źródłaGounden, Denisha, Michael N. Pillay, Timo Raab, Nolwazi Nombona, Lukas Schmidt-Mende i Werner E. van Zyl. "Metallophthalocyanines in a ternary photoactive layer (P3HT:MPc:PC70BM) for bulk heterojunction solar cells". Materials Advances 1, nr 8 (2020): 3058–72. http://dx.doi.org/10.1039/d0ma00725k.
Pełny tekst źródłaJiang, Qi, i Yingjie Xing. "Interface Tuning between Two Connecting Bulk Heterojunctions in Small Molecule Bilayer Ternary Solar Cells". Materials 13, nr 21 (29.10.2020): 4833. http://dx.doi.org/10.3390/ma13214833.
Pełny tekst źródłaXu, Xiaopeng, Zhaozhao Bi, Wei Ma, Guangjun Zhang, He Yan, Ying Li i Qiang Peng. "Stable large area organic solar cells realized by using random terpolymers donors combined with a ternary blend". Journal of Materials Chemistry A 7, nr 23 (2019): 14199–208. http://dx.doi.org/10.1039/c9ta03188j.
Pełny tekst źródłaCao, Fong-Yi, Po-Kai Huang, Yen-Chen Su, Wen-Chia Huang, Shao-Ling Chang, Kai-En Hung i Yen-Ju Cheng. "Forced coplanarity of dithienofluorene-based non-fullerene acceptors to achieve high-efficiency organic solar cells". Journal of Materials Chemistry A 7, nr 30 (2019): 17947–53. http://dx.doi.org/10.1039/c9ta05116c.
Pełny tekst źródłaKipp, Dylan, Rafael Verduzco i Venkat Ganesan. "Block copolymer compatibilizers for ternary blend polymer bulk heterojunction solar cells – an opportunity for computation aided molecular design". Molecular Systems Design & Engineering 1, nr 4 (2016): 353–69. http://dx.doi.org/10.1039/c6me00060f.
Pełny tekst źródłaChang, Shao-Ling, Fong-Yi Cao, Kuo-Hsiu Huang, Wei-Liang Lee, Meng-Hsun Lee, Chain-Shu Hsu i Yen-Ju Cheng. "2-Dimensional cross-shaped tetrathienonaphthalene-based ladder-type acceptor for high-efficiency organic solar cells". Journal of Materials Chemistry A 8, nr 24 (2020): 12141–48. http://dx.doi.org/10.1039/d0ta04240d.
Pełny tekst źródłaYadav, Shubham, i S. Sundar Kumar Iyer. "Building a planar single and binary blend stack ternary organic solar cells". Flexible and Printed Electronics 4, nr 3 (12.08.2019): 034003. http://dx.doi.org/10.1088/2058-8585/ab35f8.
Pełny tekst źródłaGhosh, Bablu K., Prafulla Kumar Jha, Swapan K. Ghosh i Tapan K. Biswas. "Organic solar cells pros and cons: Outlooks toward semitransparent cell efficiency and stability". AIP Advances 13, nr 2 (1.02.2023): 020701. http://dx.doi.org/10.1063/5.0124743.
Pełny tekst źródłaAngmo, Dechan, Morten Bjerring, Niels Chr Nielsen, Barry C. Thompson i Frederik C. Krebs. "Fullerene alloy formation and the benefits for efficient printing of ternary blend organic solar cells". Journal of Materials Chemistry C 3, nr 21 (2015): 5541–48. http://dx.doi.org/10.1039/c5tc00781j.
Pełny tekst źródłaWright, Matthew, Rui Lin, Murad J. Y. Tayebjee, Binesh Puthen Veettil, Yu Jiang, Xueting Liang, Ashraf Uddin i Gavin Conibeer. "Effect of blend composition on ternary blend organic solar cells using a low band gap polymer". Synthetic Metals 212 (luty 2016): 142–53. http://dx.doi.org/10.1016/j.synthmet.2015.12.017.
Pełny tekst źródłaKazerouni, Negar, Elizabeth L. Melenbrink, Pratyusha Das i Barry C. Thompson. "Ternary Blend Organic Solar Cells Incorporating Ductile Conjugated Polymers with Conjugation Break Spacers". ACS Applied Polymer Materials 3, nr 6 (19.05.2021): 3028–37. http://dx.doi.org/10.1021/acsapm.1c00213.
Pełny tekst źródłaMohapatra, Aiswarya Abhisek, Vincent Kim, Boregowda Puttaraju, Aditya Sadhanala, Xuechen Jiao, Christopher R. McNeill, Richard H. Friend i Satish Patil. "Förster Resonance Energy Transfer Drives Higher Efficiency in Ternary Blend Organic Solar Cells". ACS Applied Energy Materials 1, nr 9 (27.08.2018): 4874–82. http://dx.doi.org/10.1021/acsaem.8b00896.
Pełny tekst źródłaLu, Heng, Xinjun Xu i Zhishan Bo. "Perspective of a new trend in organic photovoltaic: ternary blend polymer solar cells". Science China Materials 59, nr 6 (czerwiec 2016): 444–58. http://dx.doi.org/10.1007/s40843-016-5069-6.
Pełny tekst źródłaKhlyabich, Petr P., Andrey E. Rudenko, Barry C. Thompson i Yueh-Lin Loo. "Structural Origins for Tunable Open-Circuit Voltage in Ternary-Blend Organic Solar Cells". Advanced Functional Materials 25, nr 34 (6.08.2015): 5557–63. http://dx.doi.org/10.1002/adfm.201502287.
Pełny tekst źródłaLiu, Zhiyong, i Ning Wang. "Small energy loss in ternary organic solar cells with a blend of cascade energy levels: two fullerene-free acceptors as the electron acceptor". Journal of Materials Chemistry C 7, nr 32 (2019): 10039–48. http://dx.doi.org/10.1039/c9tc03210j.
Pełny tekst źródłaZhou, Zichun, Shengjie Xu i Xiaozhang Zhu. "Mapping the Side-Chain Length of Small-Molecule Acceptors towards the Optimal Hierarchical Morphology in Ternary Organic Solar Cells". Organic Materials 03, nr 02 (kwiecień 2021): 191–97. http://dx.doi.org/10.1055/a-1472-7302.
Pełny tekst źródłaMohapatra, Aiswarya Abhisek, Ravichandran Shivanna, Suresh Podapangi, Alexander Hinderhofer, M. Ibrahim Dar, Nilabja Maity, Frank Schreiber, Aditya Sadhanala, Richard H. Friend i Satish Patil. "Role of Morphology and Förster Resonance Energy Transfer in Ternary Blend Organic Solar Cells". ACS Applied Energy Materials 3, nr 12 (7.12.2020): 12025–36. http://dx.doi.org/10.1021/acsaem.0c02179.
Pełny tekst źródłaLiu, Xiaoyu, Yajie Yan, Yao Yao i Ziqi Liang. "Ternary Blend Strategy for Achieving High-Efficiency Organic Solar Cells with Nonfullerene Acceptors Involved". Advanced Functional Materials 28, nr 29 (28.05.2018): 1802004. http://dx.doi.org/10.1002/adfm.201802004.
Pełny tekst źródłaSafriani, Lusi, Risdiana, Ayi Bahtiar, Annisa Aprilia, I. Kawasaki i Isao Watanabe. "μSR Study of Charge Carrier Motion in Active Layer P3HT:ZnO:PCBM Hybrid Solar Cells". Materials Science Forum 827 (sierpień 2015): 131–34. http://dx.doi.org/10.4028/www.scientific.net/msf.827.131.
Pełny tekst źródłaPark, Song Ju, Jung Min Cho, Won-Bae Byun, Jong-Cheol Lee, Won Suk Shin, In-Nam Kang, Sang-Jin Moon i Sang Kyu Lee. "Bulk heterojunction polymer solar cells based on binary and ternary blend systems". Journal of Polymer Science Part A: Polymer Chemistry 49, nr 20 (28.07.2011): 4416–24. http://dx.doi.org/10.1002/pola.24882.
Pełny tekst źródłaYin, Pan, Zhigang Yin, Yunlong Ma i Qingdong Zheng. "Improving the charge transport of the ternary blend active layer for efficient semitransparent organic solar cells". Energy & Environmental Science 13, nr 12 (2020): 5177–85. http://dx.doi.org/10.1039/d0ee03378b.
Pełny tekst źródłaFarinhas, Joana, Ricardo Oliveira, Rickard Hansson, Leif K. E. Ericsson, Ellen Moons, Jorge Morgado i Ana Charas. "Efficient ternary organic solar cells based on immiscible blends". Organic Electronics 41 (luty 2017): 130–36. http://dx.doi.org/10.1016/j.orgel.2016.12.009.
Pełny tekst źródłaDerouiche, H., i A. B. Mohamed. "Thermal Annealing Effect on Poly(3-hexylthiophene): Fullerene:Copper-Phthalocyanine Ternary Photoactive Layer". Scientific World Journal 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/914981.
Pełny tekst źródłaZhou, Ke, Xiaobo Zhou, Xiaofeng Xu, Chiara Musumeci, Chuanfei Wang, Weidong Xu, Xiangyi Meng, Wei Ma i Olle Inganäs. "π–π Stacking Distance and Phase Separation Controlled Efficiency in Stable All-Polymer Solar Cells". Polymers 11, nr 10 (12.10.2019): 1665. http://dx.doi.org/10.3390/polym11101665.
Pełny tekst źródła