Gotowa bibliografia na temat „Term detection in multilingual speech”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Term detection in multilingual speech”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Term detection in multilingual speech"
Karayiğit, Habibe, Ali Akdagli i Çiğdem İnan Aci. "Homophobic and Hate Speech Detection Using Multilingual-BERT Model on Turkish Social Media". Information Technology and Control 51, nr 2 (23.06.2022): 356–75. http://dx.doi.org/10.5755/j01.itc.51.2.29988.
Pełny tekst źródłaDeekshitha, G., i Leena Mary. "Multilingual spoken term detection: a review". International Journal of Speech Technology 23, nr 3 (22.07.2020): 653–67. http://dx.doi.org/10.1007/s10772-020-09732-9.
Pełny tekst źródłaCorazza, Michele, Stefano Menini, Elena Cabrio, Sara Tonelli i Serena Villata. "A Multilingual Evaluation for Online Hate Speech Detection". ACM Transactions on Internet Technology 20, nr 2 (25.05.2020): 1–22. http://dx.doi.org/10.1145/3377323.
Pełny tekst źródłaElouali, Aya, Zakaria Elberrichi i Nadia Elouali. "Hate Speech Detection on Multilingual Twitter Using Convolutional Neural Networks". Revue d'Intelligence Artificielle 34, nr 1 (29.02.2020): 81–88. http://dx.doi.org/10.18280/ria.340111.
Pełny tekst źródłaGhosh, Hiranmay, Sunil Kumar Kopparapu, Tanushyam Chattopadhyay, Ashish Khare, Sujal Subhash Wattamwar, Amarendra Gorai i Meghna Pandharipande. "Multimodal Indexing of Multilingual News Video". International Journal of Digital Multimedia Broadcasting 2010 (2010): 1–18. http://dx.doi.org/10.1155/2010/486487.
Pełny tekst źródłaWijonarko, Panji, i Amalia Zahra. "Spoken language identification on 4 Indonesian local languages using deep learning". Bulletin of Electrical Engineering and Informatics 11, nr 6 (1.12.2022): 3288–93. http://dx.doi.org/10.11591/eei.v11i6.4166.
Pełny tekst źródłaMa, Yiping, i Wei Wang. "MSFL: Explainable Multitask-Based Shared Feature Learning for Multilingual Speech Emotion Recognition". Applied Sciences 12, nr 24 (13.12.2022): 12805. http://dx.doi.org/10.3390/app122412805.
Pełny tekst źródłaVashistha, Neeraj, i Arkaitz Zubiaga. "Online Multilingual Hate Speech Detection: Experimenting with Hindi and English Social Media". Information 12, nr 1 (22.12.2020): 5. http://dx.doi.org/10.3390/info12010005.
Pełny tekst źródłaPopli, Abhimanyu, i Arun Kumar. "Multilingual query-by-example spoken term detection in Indian languages". International Journal of Speech Technology 22, nr 1 (10.01.2019): 131–41. http://dx.doi.org/10.1007/s10772-018-09585-3.
Pełny tekst źródłaThanvanthri, Srinedhi, i Shivani Ramakrishnan. "Performance of Text Classification Methods in Detection of Hate Speech in Media". International Journal for Research in Applied Science and Engineering Technology 10, nr 3 (31.03.2022): 354–58. http://dx.doi.org/10.22214/ijraset.2022.40567.
Pełny tekst źródłaRozprawy doktorskie na temat "Term detection in multilingual speech"
Fancellu, Federico. "Computational models for multilingual negation scope detection". Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33038.
Pełny tekst źródłaCesbron, Fred́eŕique Chantal. "Pitch detection using the short-term phase spectrum". Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/15503.
Pełny tekst źródłaWallace, Roy Geoffrey. "Fast and accurate phonetic spoken term detection". Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/39610/1/Roy_Wallace_Thesis.pdf.
Pełny tekst źródłaZhang, Yaodong Ph D. Massachusetts Institute of Technology. "Unsupervised speech processing with applications to query-by-example spoken term detection". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79217.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 163-173).
This thesis is motivated by the challenge of searching and extracting useful information from speech data in a completely unsupervised setting. In many real world speech processing problems, obtaining annotated data is not cost and time effective. We therefore ask how much can we learn from speech data without any transcription. To address this question, in this thesis, we chose the query-by-example spoken term detection as a specific scenario to demonstrate that this task can be done in the unsupervised setting without any annotations. To build the unsupervised spoken term detection framework, we contributed three main techniques to form a complete working flow. First, we present two posteriorgram-based speech representations which enable speaker-independent, and noisy spoken term matching. The feasibility and effectiveness of both posteriorgram features are demonstrated through a set of spoken term detection experiments on different datasets. Second, we show two lower-bounding based methods for Dynamic Time Warping (DTW) based pattern matching algorithms. Both algorithms greatly outperform the conventional DTW in a single-threaded computing environment. Third, we describe the parallel implementation of the lower-bounded DTW search algorithm. Experimental results indicate that the total running time of the entire spoken detection system grows linearly with corpus size. We also present the training of large Deep Belief Networks (DBNs) on Graphical Processing Units (GPUs). The phonetic classification experiment on the TIMIT corpus showed a speed-up of 36x for pre-training and 45x for back-propagation for a two-layer DBN trained on the GPU platform compared to the CPU platform.
by Yaodong Zhang.
Ph.D.
Kalantari, Shahram. "Improving spoken term detection using complementary information". Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/90074/1/Shahram_Kalantari_Thesis.pdf.
Pełny tekst źródłaLau, Suk-han. "The effect of type and level of noise on long-term average speech spectrum (LTASS) /". Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B17896253.
Pełny tekst źródła劉淑 i Suk-han Lau. "The effect of type and level of noise on long-term average speech spectrum (LTASS)". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31251031.
Pełny tekst źródłaAbbs, Brandon Robert. "The temporal dynamics of auditory memory for static and dynamic sounds". Diss., University of Iowa, 2008. http://ir.uiowa.edu/etd/4.
Pełny tekst źródłaRouvier, Mickaël. "Structuration de contenus audio-visuel pour le résumé automatique". Thesis, Avignon, 2011. http://www.theses.fr/2011AVIG0192/document.
Pełny tekst źródłaThese last years, with the advent of sites such as Youtube, Dailymotion or Blip TV, the number of videos available on the Internet has increased considerably. The size and their lack of structure of these collections limit access to the contents. Sum- marization is one way to produce snippets that extract the essential content and present it as concisely as possible.In this work, we focus on extraction methods for video summary, based on au- dio analysis. We treat various scientific problems related to this objective : content extraction, document structuring, definition and estimation of objective function and algorithm extraction.On each of these aspects, we make concrete proposals that are evaluated.On content extraction, we present a fast spoken-term detection. The main no- velty of this approach is that it relies on the construction of a detector based on search terms. We show that this strategy of self-organization of the detector im- proves system robustness, which significantly exceeds the classical approach based on automatic speech recogntion.We then present an acoustic filtering method for automatic speech recognition based on Gaussian mixture models and factor analysis as it was used recently in speaker identification. The originality of our contribution is the use of decomposi- tion by factor analysis for estimating supervised filters in the cepstral domain.We then discuss the issues of structuring video collections. We show that the use of different levels of representation and different sources of information in or- der to characterize the editorial style of a video is principaly based on audio analy- sis, whereas most previous works suggested that the bulk of information on gender was contained in the image. Another contribution concerns the type of discourse identification ; we propose low-level models for detecting spontaneous speech that significantly improve the state of the art for this kind of approaches.The third focus of this work concerns the summary itself. As part of video summarization, we first try, to define what a synthetic view is. Is that what cha- racterizes the whole document, or what a user would remember (by example an emotional or funny moment) ? This issue is discussed and we make some concrete proposals for the definition of objective functions corresponding to three different criteria : salience, expressiveness and significance. We then propose an algorithm for finding the sum of the maximum interest that derives from the one introduced in previous works, based on integer linear programming
Popli, Abhimanyu. "Framework for query-by-example and text based spoken term detection in multilingual and mixlingual speech". Thesis, 2018. http://localhost:8080/iit/handle/2074/7640.
Pełny tekst źródłaCzęści książek na temat "Term detection in multilingual speech"
Mary, Leena, i Deekshitha G. "Spoken Term Detection Techniques". W SpringerBriefs in Speech Technology, 61–70. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97761-4_5.
Pełny tekst źródłaŠvec, Jan, Luboš Šmídl i Josef V. Psutka. "An Analysis of the RNN-Based Spoken Term Detection Training". W Speech and Computer, 119–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66429-3_11.
Pełny tekst źródłaItoh, Yoshiaki, Hiroyuki Saito, Kazuyo Tanaka i Shi-wook Lee. "Pseudo Real-Time Spoken Term Detection Using Pre-retrieval Results". W Speech and Computer, 264–70. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01931-4_35.
Pełny tekst źródłaFiguerola, Carlos G., Angel F. Zazo, José L. Alonso Berrocal i Emilio Rodríguez Vázquez de Aldana. "Interactive and Bilingual Question Answering Using Term Suggestion and Passage Retrieval". W Multilingual Information Access for Text, Speech and Images, 363–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11519645_37.
Pełny tekst źródłaLee, Kyung-Soon, i Kyo Kageura. "Multilingual Story Link Detection Based on Event Term Weighting on Times and Multilingual Spaces". W Digital Libraries: International Collaboration and Cross-Fertilization, 398–407. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30544-6_43.
Pełny tekst źródłaVavruška, Jan, Jan Švec i Pavel Ircing. "Phonetic Spoken Term Detection in Large Audio Archive Using the WFST Framework". W Text, Speech, and Dialogue, 402–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40585-3_51.
Pełny tekst źródłaDibya, Ranjan Das Adhikary, Jitesh Pradhan, Abhinav Kumar i Brijendra Pratap Singh. "A Multilingual Review of Hate Speech Detection in Social Media Content". W Cybercrime in Social Media, 85–106. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003304180-5.
Pełny tekst źródłaLahoti, Anshul, Gurugubelli Krishna, Juan Rafel Orozco Arroyave i Anil Kumar Vuppala. "Long-Term Average Spectral Feature-Based Parkinson’s Disease Detection from Speech". W Lecture Notes in Electrical Engineering, 603–12. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0840-8_46.
Pełny tekst źródłaVelankar, Abhishek, Hrushikesh Patil i Raviraj Joshi. "Mono vs Multilingual BERT for Hate Speech Detection and Text Classification: A Case Study in Marathi". W Artificial Neural Networks in Pattern Recognition, 121–28. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20650-4_10.
Pełny tekst źródłaBhagat, Dhritesh, Aritra Ray, Adarsh Sarda, Nilanjana Dutta Roy, Mufti Mahmud i Debashis De. "Improving Mental Health Through Multimodal Emotion Detection from Speech and Text Data Using Long-Short Term Memory". W Lecture Notes in Networks and Systems, 13–23. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5191-6_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Term detection in multilingual speech"
Anguera, Xavier, Luis Javier Rodriguez-Fuentes, Igor Szőke, Andi Buzo, Florian Metze i Mikel Penagarikano. "Query-by-example spoken term detection on multilingual unconstrained speech". W Interspeech 2014. ISCA: ISCA, 2014. http://dx.doi.org/10.21437/interspeech.2014-522.
Pełny tekst źródłaKnill, K. M., M. J. F. Gales, S. P. Rath, P. C. Woodland, C. Zhang i S. X. Zhang. "Investigation of multilingual deep neural networks for spoken term detection". W 2013 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU). IEEE, 2013. http://dx.doi.org/10.1109/asru.2013.6707719.
Pełny tekst źródłaRam, Dhananjay, Lesly Miculicich i Herve Bourlard. "Multilingual Bottleneck Features for Query by Example Spoken Term Detection". W 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). IEEE, 2019. http://dx.doi.org/10.1109/asru46091.2019.9003752.
Pełny tekst źródłaBuzo, Andi, Horia Cucu, Mihai Safta i Corneliu Burileanu. "Multilingual query by example spoken term detection for under-resourced languages". W 2013 7th Conference on Speech Technology and Human - Computer Dialogue (SpeD 2013). IEEE, 2013. http://dx.doi.org/10.1109/sped.2013.6682655.
Pełny tekst źródłaMullick, Ankan. "Exploring Multilingual Intent Dynamics and Applications". W Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/818.
Pełny tekst źródłaKapil, Prashant, i Asif Ekbal. "A Transformer based Multi-Task Learning Approach Leveraging Translated and Transliterated Data to Hate Speech Detection in Hindi". W 3rd International Conference on Data Science and Machine Learning (DSML 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.121516.
Pełny tekst źródłaMotlicek, Petr, Fabio Valente i Philip N. Garner. "English spoken term detection in multilingual recordings". W Interspeech 2010. ISCA: ISCA, 2010. http://dx.doi.org/10.21437/interspeech.2010-86.
Pełny tekst źródłaArango Monnar, Ayme, Jorge Perez, Barbara Poblete, Magdalena Saldaña i Valentina Proust. "Resources for Multilingual Hate Speech Detection". W Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH). Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.woah-1.12.
Pełny tekst źródłaRöttger, Paul, Haitham Seelawi, Debora Nozza, Zeerak Talat i Bertie Vidgen. "Multilingual HateCheck: Functional Tests for Multilingual Hate Speech Detection Models". W Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH). Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.woah-1.15.
Pełny tekst źródłaSarfjoo, Seyyed Saeed, Srikanth Madikeri i Petr Motlicek. "Speech Activity Detection Based on Multilingual Speech Recognition System". W Interspeech 2021. ISCA: ISCA, 2021. http://dx.doi.org/10.21437/interspeech.2021-1058.
Pełny tekst źródła