Gotowa bibliografia na temat „Teoria di Harris”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Teoria di Harris”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Teoria di Harris"
Telaumbanua, Iman Setia, Lusia Rahajeng i Hasahatan Hutahaean. "Penerapan Kurikulum Pendidikan Agama Kristen Sekolah Minggu dengan Menggunakan Teori Maria Harris". Jurnal Shanan 6, nr 2 (31.10.2022): 241–58. http://dx.doi.org/10.33541/shanan.v6i2.4052.
Pełny tekst źródłaRahayu, Denada Padela, Marleni Marleni i Sri Rahmadani. "DAMPAK KEHADIRAN MINIMARKET PADA KEHIDUPAN MASYARAKAT DI KELURAHAN BULURAN KENALI KOTA JAMBI". Puteri Hijau : Jurnal Pendidikan Sejarah 7, nr 1 (26.01.2022): 151. http://dx.doi.org/10.24114/ph.v7i1.34616.
Pełny tekst źródłaAynun, Nur, i Hasniah Hasniah. "KEBERTAHANAN BUDAYA PANDAI BESI SEBAGAI INDUSTRI TRADISIONAL DI DESA WALELEI KECAMATAN BARANGKA". KABANTI : Jurnal Kerabat Antropologi 5, nr 2 (9.12.2021): 138–48. http://dx.doi.org/10.33772/kabanti.v5i2.1269.
Pełny tekst źródłaHadianti, Mirella Putri, i Yugih Setyanto. "Strategi Marketing Public Relations Gaspace dalam Membangun Brand Awareness di Era Pandemi". Kiwari 1, nr 3 (29.08.2022): 486–92. http://dx.doi.org/10.24912/ki.v1i3.15798.
Pełny tekst źródłaPutra, Yoga Mestika, Aprilia Kartika Putri, Siti Fitriah i Ulil Amri. "Sociological Analysis Of “Dari Paris” A Short Story by Harris Effendi Thahar". Titian: Jurnal Ilmu Humaniora 7, nr 1 (5.06.2023): 23–37. http://dx.doi.org/10.22437/titian.v7i1.23938.
Pełny tekst źródłaAzi, Rahmawati, Muarifuddin Muarif, Nur Israfyan Sofian i Ummu Kalsum. "Moral Values of the Main Character in Yellowbird Movie". JoLLA: Journal of Language, Literature, and Arts 2, nr 8 (30.08.2022): 1139–47. http://dx.doi.org/10.17977/um064v2i82022p1139-1147.
Pełny tekst źródłaBuwono, Haryo Koco, Andika Setiawan i Trijeti Trijeti. "GAP-ACCEPTENCE DAN PERSAMAAN EMPIRIS PREDIKSI KECEPATAN KENDARAAN TERHADAP JARAK PENDEKAT PADA BUNDARAN". Konstruksia 14, nr 1 (8.12.2022): 71. http://dx.doi.org/10.24853/jk.14.1.71-78.
Pełny tekst źródłaNurjannah, Nurjannah, Wa Ode Sitti Hafsah i Ashmarita Ashmarita. "HAJI DAN PESTA (Studi Pengaruh Tren Busana Muslim terhadap Identitas Haji di Desa Mataiwoi Kecamatan Mowila Kabupaten Konawe Selatan)". ETNOREFLIKA: Jurnal Sosial dan Budaya 8, nr 3 (29.10.2019): 255–61. http://dx.doi.org/10.33772/etnoreflika.v8i3.816.
Pełny tekst źródłaHidayat, Nisa Imawati. "MALE GENDER ROLE MESSAGES PADA TOKOH “HERO” DALAM EPISODE “CAHAYA HATI” DI PROGRAM “ZERO TO HERO” METRO TV". INFORMASI 45, nr 1 (1.06.2015): 33. http://dx.doi.org/10.21831/informasi.v45i1.7768.
Pełny tekst źródłaPutri, Nadya Berliana, i Nada Arina Romli. "ANALISIS DAMPAK ADIKSI INTERNET PADA MEDIA SOSIAL TWITTER DI INDONESIA DENGAN PENDEKATAN TEORI KOMUNIKASI". Jurnal Komunikasi Universitas Garut: Hasil Pemikiran dan Penelitian 7, nr 1 (6.04.2021): 582. http://dx.doi.org/10.52434/jk.v7i1.905.
Pełny tekst źródłaRozprawy doktorskie na temat "Teoria di Harris"
Ambrogi, Elena. "PDEs for neural networks with internal states". Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS122.pdf.
Pełny tekst źródłaIn the context of mathematical neuroscience, the Integrate and Fire model undoubtedly enjoys great fame and a vast literature. Yet, its peculiar mathematical structure, with non-local terms, jumps or partial diffusion mechanisms, combined with the possible co-presence of different time scales, make the study of this equation challenging and always open-ended. The classical model consists of an equation that describes the dynamics of a network of neurons based on the membrane potential of the cells. A network can be interconnected with excitatory or inhibitory linkages or disconnected, in which case the equation will be linear. Our interest is in the asymptotic behaviour of such networks in the linear case, wheremathematical tools such as the entropy and integral method and Harris theory have been useful in proving the convergence to the steady state. In the first extension of the classical Integrate and Fire model we propose, we replace the pointwise boundary condition with a non-local term, introducing a randomness parameter. For this new system, we prove long-time convergence via Harris theory and relative entropy with Poincaré inequality independent of the random parameter. Furthermore, we study the asymptotic convergence of the solutions of this model to those of the classical one. In the second extension, we dealwith the incorporation of a variable for the adaptation current. First, we study the dynamics of this last variable alone, analysing the regularity of the stationary solution in dependence on the parameters and the asymptotic behaviour by means of the different methods of relative entropy with compactness argument and integral method. We then investigate the asymptotic behaviour of the two-dimensional model through numerical simulations and we make comparison with a similar Fokker-Planck equation with partial diffusion and nonlinearity. A number of numerical simulations accompany the study of each analysed model, allowing its theoretical results to be supported or anticipated
Nel contesto delle neuroscienze matematiche, il modello di Integrate and Fire gode indubbiamente di grande fama e di una vasta letteratura. Eppure, la sua peculiare struttura matematica, con termini non-locali, meccanismi di salto o di diffusione parziale, unita all’eventuale compresenza di differenti scale temporali, rendono lo studio di questa equazione stimolante e sempre aperto. Il modello classico consiste in un’equazione che descrive la dinamica di una rete di neuroni in funzione del potenziale di membrana delle cellule. Una rete può essere interconnessa con legami eccitatori o inibitori o disconnessa, nel qual caso l’equazione sarà lineare. Noi siamo interessati al comportamento asintotico di tali reti nel caso lineare, dove strumenti matematici come l’entropia relativa, il metodo integrale e la teoria di Harris si sono rivelati utili per dimostrare la convergenza verso lo stato stazionario. Nella prima estensione del modello classico di Integrate and Fire che proponiamo, sostituiamo la condizione al bordo puntuale con un termine non locale, inserendo un parametro di casualità. Per questo nuovo sistema, dimostriamo la convergenza allo stato stazionario tramite la teoria di Harris e dell’entropia relativa con disuguaglianza di Poincaré indipendente dal parametro casuale. Inoltre, studiamo la convergenza asintotica delle soluzioni di questo modello a quelle del classico. Nella seconda estensione ci occupiamo di incorporare una variabile per la corrente di adattazione. In primo luogo, studiamo la dinamica di quest’ultima variabile sola, analizzando la regolarità della soluzione stazionaria in dipendenza dai parametri e studiando il comportamento asintotico tramite i differenti metodi dell’entropia relativa con argomento di compattezza e metodo integrale. Indaghiamo poi la dinamica del modello bidimensionale tramite delle simulazioni numeriche e lo confrontiamo con un’equazione di Fokker-Planck similare con diffusione parziale e nonlinearità. Alcune simulazioni numeriche accompagnano lo studio di ogni modello analizzato, permettendo così di supportarne o anticiparne i risultati teorici
Streszczenia konferencji na temat "Teoria di Harris"
Rafikasari, Astri. "Pemetaan Elit Politik Lokal di Pulau Biak dan Pengaruhnya terhadap Rencana Pembangunan Bandar Antariksa". W Seminar Nasional Kebijakan Penerbangan dan Antariksa II. Bogor: In Media, 2018. http://dx.doi.org/10.30536/p.sinaskpa.ii.6.
Pełny tekst źródła