Artykuły w czasopismach na temat „Temporal Graph Processing”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Temporal Graph Processing”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Christensen, Andrew J., Ananya Sen Gupta, and Ivars Kirsteins. "Sonar target feature representation using temporal graph networks." Journal of the Acoustical Society of America 151, no. 4 (2022): A102. http://dx.doi.org/10.1121/10.0010791.
Pełny tekst źródłaChoi, Jeongwhan, Hwangyong Choi, Jeehyun Hwang, and Noseong Park. "Graph Neural Controlled Differential Equations for Traffic Forecasting." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 6 (2022): 6367–74. http://dx.doi.org/10.1609/aaai.v36i6.20587.
Pełny tekst źródłaZhao, Xiaojuan, Aiping Li, Rong Jiang, Kai Chen, and Zhichao Peng. "Householder Transformation-Based Temporal Knowledge Graph Reasoning." Electronics 12, no. 9 (2023): 2001. http://dx.doi.org/10.3390/electronics12092001.
Pełny tekst źródłaLiu, Jun. "Motion Action Analysis at Basketball Sports Scene Based on Image Processing." Scientific Programming 2022 (March 7, 2022): 1–11. http://dx.doi.org/10.1155/2022/7349548.
Pełny tekst źródłaLi, Jing, Wenyue Guo, Haiyan Liu, Xin Chen, Anzhu Yu, and Jia Li. "Predicting User Activity Intensity Using Geographic Interactions Based on Social Media Check-In Data." ISPRS International Journal of Geo-Information 10, no. 8 (2021): 555. http://dx.doi.org/10.3390/ijgi10080555.
Pełny tekst źródłaKe, Xiangyu, Arijit Khan, and Francesco Bonchi. "Multi-relation Graph Summarization." ACM Transactions on Knowledge Discovery from Data 16, no. 5 (2022): 1–30. http://dx.doi.org/10.1145/3494561.
Pełny tekst źródłaZhang, Guoxing, Haixiao Wang, and Yuanpu Yin. "Multi-type Parameter Prediction of Traffic Flow Based on Time-space Attention Graph Convolutional Network." International Journal of Circuits, Systems and Signal Processing 15 (August 11, 2021): 902–12. http://dx.doi.org/10.46300/9106.2021.15.97.
Pełny tekst źródłaZheng, Xiaolong, Dongdong Guan, Bangjie Li, Zhengsheng Chen, and Lefei Pan. "Global and Local Graph-Based Difference Image Enhancement for Change Detection." Remote Sensing 15, no. 5 (2023): 1194. http://dx.doi.org/10.3390/rs15051194.
Pełny tekst źródłaSteinbauer, Matthias, and Gabriele Anderst Kotsis. "DynamoGraph: extending the Pregel paradigm for large-scale temporal graph processing." International Journal of Grid and Utility Computing 7, no. 2 (2016): 141. http://dx.doi.org/10.1504/ijguc.2016.077491.
Pełny tekst źródłaChen, Yaosen, Bing Guo, Yan Shen, Wei Wang, Weichen Lu, and Xinhua Suo. "Boundary graph convolutional network for temporal action detection." Image and Vision Computing 109 (May 2021): 104144. http://dx.doi.org/10.1016/j.imavis.2021.104144.
Pełny tekst źródłaSun, Linhui, Yifan Zhang, Jian Cheng, and Hanqing Lu. "Asynchronous Event Processing with Local-Shift Graph Convolutional Network." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 2 (2023): 2402–10. http://dx.doi.org/10.1609/aaai.v37i2.25336.
Pełny tekst źródłaZeng, Hui, Chaojie Jiang, Yuanchun Lan, Xiaohui Huang, Junyang Wang, and Xinhua Yuan. "Long Short-Term Fusion Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting." Electronics 12, no. 1 (2023): 238. http://dx.doi.org/10.3390/electronics12010238.
Pełny tekst źródłaGLAVAŠ, GORAN, and JAN ŠNAJDER. "Construction and evaluation of event graphs." Natural Language Engineering 21, no. 4 (2014): 607–52. http://dx.doi.org/10.1017/s1351324914000060.
Pełny tekst źródłaFang, Junhua, Jiafeng Ding, Pengpeng Zhao, Jiajie Xu, An Liu, and Zhixu Li. "Distributed and parallel processing for real-time and dynamic spatio-temporal graph." World Wide Web 23, no. 2 (2019): 905–26. http://dx.doi.org/10.1007/s11280-019-00741-6.
Pełny tekst źródłaKörner, Christof, Margit Höfler, Barbara Tröbinger, and Iain D. Gilchrist. "Eye Movements Indicate the Temporal Organisation of Information Processing in Graph Comprehension." Applied Cognitive Psychology 28, no. 3 (2014): 360–73. http://dx.doi.org/10.1002/acp.3006.
Pełny tekst źródłaWang, Xiaojuan, Ziliang Gan, Lei Jin, Yabo Xiao, and Mingshu He. "Adaptive Multi-Scale Difference Graph Convolution Network for Skeleton-Based Action Recognition." Electronics 12, no. 13 (2023): 2852. http://dx.doi.org/10.3390/electronics12132852.
Pełny tekst źródłaKerracher, Natalie, Jessie Kennedy, and Kevin Chalmers. "A Task Taxonomy for Temporal Graph Visualisation." IEEE Transactions on Visualization and Computer Graphics 21, no. 10 (2015): 1160–72. http://dx.doi.org/10.1109/tvcg.2015.2424889.
Pełny tekst źródłaEl rai, Marwa Chendeb, Muna Darweesh, and Mina Al-Saad. "Semi-Supervised Segmentation of Echocardiography Videos Using Graph Signal Processing." Electronics 11, no. 21 (2022): 3462. http://dx.doi.org/10.3390/electronics11213462.
Pełny tekst źródłaXue, Jizhong, Zaohui Kang, Chun Sing Lai, Yu Wang, Fangyuan Xu, and Haoliang Yuan. "Distributed Generation Forecasting Based on Rolling Graph Neural Network (ROLL-GNN)." Energies 16, no. 11 (2023): 4436. http://dx.doi.org/10.3390/en16114436.
Pełny tekst źródłaLiu, Zhi, Jixin Bian, Deju Zhang, Yang Chen, Guojiang Shen, and Xiangjie Kong. "Dynamic Multi-View Coupled Graph Convolution Network for Urban Travel Demand Forecasting." Electronics 11, no. 16 (2022): 2620. http://dx.doi.org/10.3390/electronics11162620.
Pełny tekst źródłaLi, Tingwei, Ruiwen Zhang, and Qing Li. "A Novel Graph Representation for Skeleton-based Action Recognition." Signal & Image Processing : An International Journal 11, no. 6 (2020): 65–73. http://dx.doi.org/10.5121/sipij.2020.11605.
Pełny tekst źródłaLi, Chaoyue, Lian Zou, Cien Fan, Hao Jiang, and Yifeng Liu. "Multi-Stage Attention-Enhanced Sparse Graph Convolutional Network for Skeleton-Based Action Recognition." Electronics 10, no. 18 (2021): 2198. http://dx.doi.org/10.3390/electronics10182198.
Pełny tekst źródłaBinsfeld Gonçalves, Laurent, Ivan Nesic, Marko Obradovic, Bram Stieltjes, Thomas Weikert, and Jens Bremerich. "Natural Language Processing and Graph Theory: Making Sense of Imaging Records in a Novel Representation Frame." JMIR Medical Informatics 10, no. 12 (2022): e40534. http://dx.doi.org/10.2196/40534.
Pełny tekst źródłaTomei, Matteo, Lorenzo Baraldi, Simone Calderara, Simone Bronzin, and Rita Cucchiara. "Video action detection by learning graph-based spatio-temporal interactions." Computer Vision and Image Understanding 206 (May 2021): 103187. http://dx.doi.org/10.1016/j.cviu.2021.103187.
Pełny tekst źródłaWang, Daocheng, Chao Chen, Chong Di, and Minglei Shu. "Exploring Behavior Patterns for Next-POI Recommendation via Graph Self-Supervised Learning." Electronics 12, no. 8 (2023): 1939. http://dx.doi.org/10.3390/electronics12081939.
Pełny tekst źródłaLi, Huiyong, Xiaofeng Wu, and Yanhong Wang. "Dynamic Performance Analysis of STEP System in Internet of Vehicles Based on Queuing Theory." Computational Intelligence and Neuroscience 2022 (April 10, 2022): 1–13. http://dx.doi.org/10.1155/2022/8322029.
Pełny tekst źródłaKaruza, Elisabeth A., Ari E. Kahn, and Danielle S. Bassett. "Human Sensitivity to Community Structure Is Robust to Topological Variation." Complexity 2019 (February 11, 2019): 1–8. http://dx.doi.org/10.1155/2019/8379321.
Pełny tekst źródłaBayram, Ulya, Runia Roy, Aqil Assalil, and Lamia BenHiba. "The unknown knowns: a graph-based approach for temporal COVID-19 literature mining." Online Information Review 45, no. 4 (2021): 687–708. http://dx.doi.org/10.1108/oir-12-2020-0562.
Pełny tekst źródłaCarrillo, Rafael E., Martin Leblanc, Baptiste Schubnel, Renaud Langou, Cyril Topfel, and Pierre-Jean Alet. "High-Resolution PV Forecasting from Imperfect Data: A Graph-Based Solution." Energies 13, no. 21 (2020): 5763. http://dx.doi.org/10.3390/en13215763.
Pełny tekst źródłaAqil, Marco, Selen Atasoy, Morten L. Kringelbach, and Rikkert Hindriks. "Graph neural fields: A framework for spatiotemporal dynamical models on the human connectome." PLOS Computational Biology 17, no. 1 (2021): e1008310. http://dx.doi.org/10.1371/journal.pcbi.1008310.
Pełny tekst źródłaGuda, Vanitha, and SureshKumar Sanampudi. "Event Time Relationship in Natural Language Text." International Journal of Recent Contributions from Engineering, Science & IT (iJES) 7, no. 3 (2019): 4. http://dx.doi.org/10.3991/ijes.v7i3.10985.
Pełny tekst źródłaHuang, Xiaohui, Yuanchun Lan, Yuming Ye, Junyang Wang, and Yuan Jiang. "Traffic Flow Prediction Based on Multi-Mode Spatial-Temporal Convolution of Mixed Hop Diffuse ODE." Electronics 11, no. 19 (2022): 3012. http://dx.doi.org/10.3390/electronics11193012.
Pełny tekst źródłaGhosh, Dipon Kumar, Amitabha Chakrabarty, Hyeonjoon Moon, and M. Jalil Piran. "A Spatio-Temporal Graph Convolutional Network Model for Internet of Medical Things (IoMT)." Sensors 22, no. 21 (2022): 8438. http://dx.doi.org/10.3390/s22218438.
Pełny tekst źródłaHe, Jiatong, Jia Cui, Gaobo Zhang, Mingrui Xue, Dengyu Chu, and Yanna Zhao. "Spatial–temporal seizure detection with graph attention network and bi-directional LSTM architecture." Biomedical Signal Processing and Control 78 (September 2022): 103908. http://dx.doi.org/10.1016/j.bspc.2022.103908.
Pełny tekst źródłaZhao, Mengyao, Zhengping Hu, Shufang Li, Shuai Bi, and Zhe Sun. "Two-stream graph convolutional neural network fusion for weakly supervised temporal action detection." Signal, Image and Video Processing 16, no. 4 (2021): 947–54. http://dx.doi.org/10.1007/s11760-021-02039-5.
Pełny tekst źródłaShuai, Wenjing, Fenlong Jiang, Hanhong Zheng, and Jianzhao Li. "MSGATN: A Superpixel-Based Multi-Scale Siamese Graph Attention Network for Change Detection in Remote Sensing Images." Applied Sciences 12, no. 10 (2022): 5158. http://dx.doi.org/10.3390/app12105158.
Pełny tekst źródłaWu, Lei, Yong Tang, Pei Zhang, and Ying Zhou. "Spatio-Temporal Heterogeneous Graph Neural Networks for Estimating Time of Travel." Electronics 12, no. 6 (2023): 1293. http://dx.doi.org/10.3390/electronics12061293.
Pełny tekst źródłaCao, Yibo, Lu Liu, and Yuhan Dong. "Convolutional Long Short-Term Memory Two-Dimensional Bidirectional Graph Convolutional Network for Taxi Demand Prediction." Sustainability 15, no. 10 (2023): 7903. http://dx.doi.org/10.3390/su15107903.
Pełny tekst źródłaHuang, Wanrong, Xiaodong Yi, Yichun Sun, Yingwen Liu, Shuai Ye, and Hengzhu Liu. "Scalable Parallel Distributed Coprocessor System for Graph Searching Problems with Massive Data." Scientific Programming 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/1496104.
Pełny tekst źródłaRozhdestvenskaya, К. N. "Temporal analysis of a control system in a data processing network." Information and Control Systems, no. 1 (February 19, 2019): 32–39. http://dx.doi.org/10.31799/1684-8853-2019-1-32-39.
Pełny tekst źródłaPang, Shiyan, Xiangyun Hu, Mi Zhang, Zhongliang Cai, and Fengzhu Liu. "Co-Segmentation and Superpixel-Based Graph Cuts for Building Change Detection from Bi-Temporal Digital Surface Models and Aerial Images." Remote Sensing 11, no. 6 (2019): 729. http://dx.doi.org/10.3390/rs11060729.
Pełny tekst źródłaDo, M., and S. Kambhampati. "SAPA: A Multi-objective Metric Temporal Planner." Journal of Artificial Intelligence Research 20 (December 1, 2003): 155–94. http://dx.doi.org/10.1613/jair.1156.
Pełny tekst źródłaSighencea, Bogdan Ilie, Ion Rareș Stanciu, and Cătălin Daniel Căleanu. "D-STGCN: Dynamic Pedestrian Trajectory Prediction Using Spatio-Temporal Graph Convolutional Networks." Electronics 12, no. 3 (2023): 611. http://dx.doi.org/10.3390/electronics12030611.
Pełny tekst źródłaWeghenkel, Björn, and Laurenz Wiskott. "Slowness as a Proxy for Temporal Predictability: An Empirical Comparison." Neural Computation 30, no. 5 (2018): 1151–79. http://dx.doi.org/10.1162/neco_a_01070.
Pełny tekst źródłaShi, Yong, Yang Xiao, Pei Quan, MingLong Lei, and Lingfeng Niu. "Document-level relation extraction via graph transformer networks and temporal convolutional networks." Pattern Recognition Letters 149 (September 2021): 150–56. http://dx.doi.org/10.1016/j.patrec.2021.06.012.
Pełny tekst źródłaPan, Chengsheng, Jiang Zhu, Zhixiang Kong, Huaifeng Shi, and Wensheng Yang. "DC-STGCN: Dual-Channel Based Graph Convolutional Networks for Network Traffic Forecasting." Electronics 10, no. 9 (2021): 1014. http://dx.doi.org/10.3390/electronics10091014.
Pełny tekst źródłaFeng, Yongliang. "Air Quality Prediction Model Using Deep Learning in Internet of Things Environmental Monitoring System." Mobile Information Systems 2022 (September 29, 2022): 1–9. http://dx.doi.org/10.1155/2022/7221157.
Pełny tekst źródłaHu, Zhiqiu, Fengjing Shao, and Rencheng Sun. "A New Perspective on Traffic Flow Prediction: A Graph Spatial-Temporal Network with Complex Network Information." Electronics 11, no. 15 (2022): 2432. http://dx.doi.org/10.3390/electronics11152432.
Pełny tekst źródłaZhu, Qilin, Hongmin Deng, and Kaixuan Wang. "Skeleton Action Recognition Based on Temporal Gated Unit and Adaptive Graph Convolution." Electronics 11, no. 18 (2022): 2973. http://dx.doi.org/10.3390/electronics11182973.
Pełny tekst źródłaZhong, Yang Jun, and Qian Cai. "A Novel Registration Approach for Mammograms Based on SIFT and Graph Transformation." Applied Mechanics and Materials 157-158 (February 2012): 1313–19. http://dx.doi.org/10.4028/www.scientific.net/amm.157-158.1313.
Pełny tekst źródła