Artykuły w czasopismach na temat „Temporal Graph Processing”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Temporal Graph Processing”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Christensen, Andrew J., Ananya Sen Gupta i Ivars Kirsteins. "Sonar target feature representation using temporal graph networks". Journal of the Acoustical Society of America 151, nr 4 (kwiecień 2022): A102. http://dx.doi.org/10.1121/10.0010791.
Pełny tekst źródłaChoi, Jeongwhan, Hwangyong Choi, Jeehyun Hwang i Noseong Park. "Graph Neural Controlled Differential Equations for Traffic Forecasting". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 6 (28.06.2022): 6367–74. http://dx.doi.org/10.1609/aaai.v36i6.20587.
Pełny tekst źródłaZhao, Xiaojuan, Aiping Li, Rong Jiang, Kai Chen i Zhichao Peng. "Householder Transformation-Based Temporal Knowledge Graph Reasoning". Electronics 12, nr 9 (26.04.2023): 2001. http://dx.doi.org/10.3390/electronics12092001.
Pełny tekst źródłaLiu, Jun. "Motion Action Analysis at Basketball Sports Scene Based on Image Processing". Scientific Programming 2022 (7.03.2022): 1–11. http://dx.doi.org/10.1155/2022/7349548.
Pełny tekst źródłaLi, Jing, Wenyue Guo, Haiyan Liu, Xin Chen, Anzhu Yu i Jia Li. "Predicting User Activity Intensity Using Geographic Interactions Based on Social Media Check-In Data". ISPRS International Journal of Geo-Information 10, nr 8 (17.08.2021): 555. http://dx.doi.org/10.3390/ijgi10080555.
Pełny tekst źródłaKe, Xiangyu, Arijit Khan i Francesco Bonchi. "Multi-relation Graph Summarization". ACM Transactions on Knowledge Discovery from Data 16, nr 5 (31.10.2022): 1–30. http://dx.doi.org/10.1145/3494561.
Pełny tekst źródłaZhang, Guoxing, Haixiao Wang i Yuanpu Yin. "Multi-type Parameter Prediction of Traffic Flow Based on Time-space Attention Graph Convolutional Network". International Journal of Circuits, Systems and Signal Processing 15 (11.08.2021): 902–12. http://dx.doi.org/10.46300/9106.2021.15.97.
Pełny tekst źródłaZheng, Xiaolong, Dongdong Guan, Bangjie Li, Zhengsheng Chen i Lefei Pan. "Global and Local Graph-Based Difference Image Enhancement for Change Detection". Remote Sensing 15, nr 5 (21.02.2023): 1194. http://dx.doi.org/10.3390/rs15051194.
Pełny tekst źródłaSteinbauer, Matthias, i Gabriele Anderst Kotsis. "DynamoGraph: extending the Pregel paradigm for large-scale temporal graph processing". International Journal of Grid and Utility Computing 7, nr 2 (2016): 141. http://dx.doi.org/10.1504/ijguc.2016.077491.
Pełny tekst źródłaChen, Yaosen, Bing Guo, Yan Shen, Wei Wang, Weichen Lu i Xinhua Suo. "Boundary graph convolutional network for temporal action detection". Image and Vision Computing 109 (maj 2021): 104144. http://dx.doi.org/10.1016/j.imavis.2021.104144.
Pełny tekst źródłaSun, Linhui, Yifan Zhang, Jian Cheng i Hanqing Lu. "Asynchronous Event Processing with Local-Shift Graph Convolutional Network". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 2 (26.06.2023): 2402–10. http://dx.doi.org/10.1609/aaai.v37i2.25336.
Pełny tekst źródłaZeng, Hui, Chaojie Jiang, Yuanchun Lan, Xiaohui Huang, Junyang Wang i Xinhua Yuan. "Long Short-Term Fusion Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting". Electronics 12, nr 1 (3.01.2023): 238. http://dx.doi.org/10.3390/electronics12010238.
Pełny tekst źródłaGLAVAŠ, GORAN, i JAN ŠNAJDER. "Construction and evaluation of event graphs". Natural Language Engineering 21, nr 4 (1.05.2014): 607–52. http://dx.doi.org/10.1017/s1351324914000060.
Pełny tekst źródłaFang, Junhua, Jiafeng Ding, Pengpeng Zhao, Jiajie Xu, An Liu i Zhixu Li. "Distributed and parallel processing for real-time and dynamic spatio-temporal graph". World Wide Web 23, nr 2 (18.11.2019): 905–26. http://dx.doi.org/10.1007/s11280-019-00741-6.
Pełny tekst źródłaKörner, Christof, Margit Höfler, Barbara Tröbinger i Iain D. Gilchrist. "Eye Movements Indicate the Temporal Organisation of Information Processing in Graph Comprehension". Applied Cognitive Psychology 28, nr 3 (12.02.2014): 360–73. http://dx.doi.org/10.1002/acp.3006.
Pełny tekst źródłaWang, Xiaojuan, Ziliang Gan, Lei Jin, Yabo Xiao i Mingshu He. "Adaptive Multi-Scale Difference Graph Convolution Network for Skeleton-Based Action Recognition". Electronics 12, nr 13 (28.06.2023): 2852. http://dx.doi.org/10.3390/electronics12132852.
Pełny tekst źródłaKerracher, Natalie, Jessie Kennedy i Kevin Chalmers. "A Task Taxonomy for Temporal Graph Visualisation". IEEE Transactions on Visualization and Computer Graphics 21, nr 10 (1.10.2015): 1160–72. http://dx.doi.org/10.1109/tvcg.2015.2424889.
Pełny tekst źródłaEl rai, Marwa Chendeb, Muna Darweesh i Mina Al-Saad. "Semi-Supervised Segmentation of Echocardiography Videos Using Graph Signal Processing". Electronics 11, nr 21 (26.10.2022): 3462. http://dx.doi.org/10.3390/electronics11213462.
Pełny tekst źródłaXue, Jizhong, Zaohui Kang, Chun Sing Lai, Yu Wang, Fangyuan Xu i Haoliang Yuan. "Distributed Generation Forecasting Based on Rolling Graph Neural Network (ROLL-GNN)". Energies 16, nr 11 (31.05.2023): 4436. http://dx.doi.org/10.3390/en16114436.
Pełny tekst źródłaLiu, Zhi, Jixin Bian, Deju Zhang, Yang Chen, Guojiang Shen i Xiangjie Kong. "Dynamic Multi-View Coupled Graph Convolution Network for Urban Travel Demand Forecasting". Electronics 11, nr 16 (21.08.2022): 2620. http://dx.doi.org/10.3390/electronics11162620.
Pełny tekst źródłaLi, Tingwei, Ruiwen Zhang i Qing Li. "A Novel Graph Representation for Skeleton-based Action Recognition". Signal & Image Processing : An International Journal 11, nr 6 (30.12.2020): 65–73. http://dx.doi.org/10.5121/sipij.2020.11605.
Pełny tekst źródłaLi, Chaoyue, Lian Zou, Cien Fan, Hao Jiang i Yifeng Liu. "Multi-Stage Attention-Enhanced Sparse Graph Convolutional Network for Skeleton-Based Action Recognition". Electronics 10, nr 18 (8.09.2021): 2198. http://dx.doi.org/10.3390/electronics10182198.
Pełny tekst źródłaBinsfeld Gonçalves, Laurent, Ivan Nesic, Marko Obradovic, Bram Stieltjes, Thomas Weikert i Jens Bremerich. "Natural Language Processing and Graph Theory: Making Sense of Imaging Records in a Novel Representation Frame". JMIR Medical Informatics 10, nr 12 (21.12.2022): e40534. http://dx.doi.org/10.2196/40534.
Pełny tekst źródłaTomei, Matteo, Lorenzo Baraldi, Simone Calderara, Simone Bronzin i Rita Cucchiara. "Video action detection by learning graph-based spatio-temporal interactions". Computer Vision and Image Understanding 206 (maj 2021): 103187. http://dx.doi.org/10.1016/j.cviu.2021.103187.
Pełny tekst źródłaWang, Daocheng, Chao Chen, Chong Di i Minglei Shu. "Exploring Behavior Patterns for Next-POI Recommendation via Graph Self-Supervised Learning". Electronics 12, nr 8 (20.04.2023): 1939. http://dx.doi.org/10.3390/electronics12081939.
Pełny tekst źródłaLi, Huiyong, Xiaofeng Wu i Yanhong Wang. "Dynamic Performance Analysis of STEP System in Internet of Vehicles Based on Queuing Theory". Computational Intelligence and Neuroscience 2022 (10.04.2022): 1–13. http://dx.doi.org/10.1155/2022/8322029.
Pełny tekst źródłaKaruza, Elisabeth A., Ari E. Kahn i Danielle S. Bassett. "Human Sensitivity to Community Structure Is Robust to Topological Variation". Complexity 2019 (11.02.2019): 1–8. http://dx.doi.org/10.1155/2019/8379321.
Pełny tekst źródłaBayram, Ulya, Runia Roy, Aqil Assalil i Lamia BenHiba. "The unknown knowns: a graph-based approach for temporal COVID-19 literature mining". Online Information Review 45, nr 4 (23.03.2021): 687–708. http://dx.doi.org/10.1108/oir-12-2020-0562.
Pełny tekst źródłaCarrillo, Rafael E., Martin Leblanc, Baptiste Schubnel, Renaud Langou, Cyril Topfel i Pierre-Jean Alet. "High-Resolution PV Forecasting from Imperfect Data: A Graph-Based Solution". Energies 13, nr 21 (3.11.2020): 5763. http://dx.doi.org/10.3390/en13215763.
Pełny tekst źródłaAqil, Marco, Selen Atasoy, Morten L. Kringelbach i Rikkert Hindriks. "Graph neural fields: A framework for spatiotemporal dynamical models on the human connectome". PLOS Computational Biology 17, nr 1 (28.01.2021): e1008310. http://dx.doi.org/10.1371/journal.pcbi.1008310.
Pełny tekst źródłaGuda, Vanitha, i SureshKumar Sanampudi. "Event Time Relationship in Natural Language Text". International Journal of Recent Contributions from Engineering, Science & IT (iJES) 7, nr 3 (25.09.2019): 4. http://dx.doi.org/10.3991/ijes.v7i3.10985.
Pełny tekst źródłaHuang, Xiaohui, Yuanchun Lan, Yuming Ye, Junyang Wang i Yuan Jiang. "Traffic Flow Prediction Based on Multi-Mode Spatial-Temporal Convolution of Mixed Hop Diffuse ODE". Electronics 11, nr 19 (22.09.2022): 3012. http://dx.doi.org/10.3390/electronics11193012.
Pełny tekst źródłaGhosh, Dipon Kumar, Amitabha Chakrabarty, Hyeonjoon Moon i M. Jalil Piran. "A Spatio-Temporal Graph Convolutional Network Model for Internet of Medical Things (IoMT)". Sensors 22, nr 21 (2.11.2022): 8438. http://dx.doi.org/10.3390/s22218438.
Pełny tekst źródłaHe, Jiatong, Jia Cui, Gaobo Zhang, Mingrui Xue, Dengyu Chu i Yanna Zhao. "Spatial–temporal seizure detection with graph attention network and bi-directional LSTM architecture". Biomedical Signal Processing and Control 78 (wrzesień 2022): 103908. http://dx.doi.org/10.1016/j.bspc.2022.103908.
Pełny tekst źródłaZhao, Mengyao, Zhengping Hu, Shufang Li, Shuai Bi i Zhe Sun. "Two-stream graph convolutional neural network fusion for weakly supervised temporal action detection". Signal, Image and Video Processing 16, nr 4 (11.10.2021): 947–54. http://dx.doi.org/10.1007/s11760-021-02039-5.
Pełny tekst źródłaShuai, Wenjing, Fenlong Jiang, Hanhong Zheng i Jianzhao Li. "MSGATN: A Superpixel-Based Multi-Scale Siamese Graph Attention Network for Change Detection in Remote Sensing Images". Applied Sciences 12, nr 10 (20.05.2022): 5158. http://dx.doi.org/10.3390/app12105158.
Pełny tekst źródłaWu, Lei, Yong Tang, Pei Zhang i Ying Zhou. "Spatio-Temporal Heterogeneous Graph Neural Networks for Estimating Time of Travel". Electronics 12, nr 6 (8.03.2023): 1293. http://dx.doi.org/10.3390/electronics12061293.
Pełny tekst źródłaCao, Yibo, Lu Liu i Yuhan Dong. "Convolutional Long Short-Term Memory Two-Dimensional Bidirectional Graph Convolutional Network for Taxi Demand Prediction". Sustainability 15, nr 10 (11.05.2023): 7903. http://dx.doi.org/10.3390/su15107903.
Pełny tekst źródłaHuang, Wanrong, Xiaodong Yi, Yichun Sun, Yingwen Liu, Shuai Ye i Hengzhu Liu. "Scalable Parallel Distributed Coprocessor System for Graph Searching Problems with Massive Data". Scientific Programming 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/1496104.
Pełny tekst źródłaRozhdestvenskaya, К. N. "Temporal analysis of a control system in a data processing network". Information and Control Systems, nr 1 (19.02.2019): 32–39. http://dx.doi.org/10.31799/1684-8853-2019-1-32-39.
Pełny tekst źródłaPang, Shiyan, Xiangyun Hu, Mi Zhang, Zhongliang Cai i Fengzhu Liu. "Co-Segmentation and Superpixel-Based Graph Cuts for Building Change Detection from Bi-Temporal Digital Surface Models and Aerial Images". Remote Sensing 11, nr 6 (26.03.2019): 729. http://dx.doi.org/10.3390/rs11060729.
Pełny tekst źródłaDo, M., i S. Kambhampati. "SAPA: A Multi-objective Metric Temporal Planner". Journal of Artificial Intelligence Research 20 (1.12.2003): 155–94. http://dx.doi.org/10.1613/jair.1156.
Pełny tekst źródłaSighencea, Bogdan Ilie, Ion Rareș Stanciu i Cătălin Daniel Căleanu. "D-STGCN: Dynamic Pedestrian Trajectory Prediction Using Spatio-Temporal Graph Convolutional Networks". Electronics 12, nr 3 (26.01.2023): 611. http://dx.doi.org/10.3390/electronics12030611.
Pełny tekst źródłaWeghenkel, Björn, i Laurenz Wiskott. "Slowness as a Proxy for Temporal Predictability: An Empirical Comparison". Neural Computation 30, nr 5 (maj 2018): 1151–79. http://dx.doi.org/10.1162/neco_a_01070.
Pełny tekst źródłaShi, Yong, Yang Xiao, Pei Quan, MingLong Lei i Lingfeng Niu. "Document-level relation extraction via graph transformer networks and temporal convolutional networks". Pattern Recognition Letters 149 (wrzesień 2021): 150–56. http://dx.doi.org/10.1016/j.patrec.2021.06.012.
Pełny tekst źródłaPan, Chengsheng, Jiang Zhu, Zhixiang Kong, Huaifeng Shi i Wensheng Yang. "DC-STGCN: Dual-Channel Based Graph Convolutional Networks for Network Traffic Forecasting". Electronics 10, nr 9 (24.04.2021): 1014. http://dx.doi.org/10.3390/electronics10091014.
Pełny tekst źródłaFeng, Yongliang. "Air Quality Prediction Model Using Deep Learning in Internet of Things Environmental Monitoring System". Mobile Information Systems 2022 (29.09.2022): 1–9. http://dx.doi.org/10.1155/2022/7221157.
Pełny tekst źródłaHu, Zhiqiu, Fengjing Shao i Rencheng Sun. "A New Perspective on Traffic Flow Prediction: A Graph Spatial-Temporal Network with Complex Network Information". Electronics 11, nr 15 (4.08.2022): 2432. http://dx.doi.org/10.3390/electronics11152432.
Pełny tekst źródłaZhu, Qilin, Hongmin Deng i Kaixuan Wang. "Skeleton Action Recognition Based on Temporal Gated Unit and Adaptive Graph Convolution". Electronics 11, nr 18 (19.09.2022): 2973. http://dx.doi.org/10.3390/electronics11182973.
Pełny tekst źródłaZhong, Yang Jun, i Qian Cai. "A Novel Registration Approach for Mammograms Based on SIFT and Graph Transformation". Applied Mechanics and Materials 157-158 (luty 2012): 1313–19. http://dx.doi.org/10.4028/www.scientific.net/amm.157-158.1313.
Pełny tekst źródła