Gotowa bibliografia na temat „Temporal Algorithms”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Temporal Algorithms”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Temporal Algorithms"
Oettershagen, Lutz, i Petra Mutzel. "Computing top-k temporal closeness in temporal networks". Knowledge and Information Systems 64, nr 2 (8.01.2022): 507–35. http://dx.doi.org/10.1007/s10115-021-01639-4.
Pełny tekst źródłaVan Beek, P., i D. W. Manchak. "The Design and Experimental Analysis of Algorithms for Temporal Reasoning". Journal of Artificial Intelligence Research 4 (1.01.1996): 1–18. http://dx.doi.org/10.1613/jair.232.
Pełny tekst źródłaLi, Meng He, Chuan Lin, Jing Bei Tian i Sheng Hui Pan. "An Algorithms for Super-Resolution Reconstruction of Video Based on Spatio-Temporal Adaptive". Advanced Materials Research 532-533 (czerwiec 2012): 1680–84. http://dx.doi.org/10.4028/www.scientific.net/amr.532-533.1680.
Pełny tekst źródłaSun, Xiaoli, Yusong Tan, Qingbo Wu, Jing Wang i Changxiang Shen. "New Algorithms for Counting Temporal Graph Pattern". Symmetry 11, nr 10 (20.09.2019): 1188. http://dx.doi.org/10.3390/sym11101188.
Pełny tekst źródłaLi, Xin, Huayan Yu, Ligang Yuan i Xiaolin Qin. "Query Optimization for Distributed Spatio-Temporal Sensing Data Processing". Sensors 22, nr 5 (23.02.2022): 1748. http://dx.doi.org/10.3390/s22051748.
Pełny tekst źródłaAhmed, Nesreen K., Nick Duffield i Ryan A. Rossi. "Online Sampling of Temporal Networks". ACM Transactions on Knowledge Discovery from Data 15, nr 4 (czerwiec 2021): 1–27. http://dx.doi.org/10.1145/3442202.
Pełny tekst źródłaJain, Anuj, i Sartaj Sahni. "Foremost Walks and Paths in Interval Temporal Graphs". Algorithms 15, nr 10 (29.09.2022): 361. http://dx.doi.org/10.3390/a15100361.
Pełny tekst źródłaDeb, Rohan, i Shalabh Bhatnagar. "Gradient Temporal Difference with Momentum: Stability and Convergence". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 6 (28.06.2022): 6488–96. http://dx.doi.org/10.1609/aaai.v36i6.20601.
Pełny tekst źródłaGuo, Yangnan, Cangjiao Wang, Shaogang Lei, Junzhe Yang i Yibo Zhao. "A Framework of Spatio-Temporal Fusion Algorithm Selection for Landsat NDVI Time Series Construction". ISPRS International Journal of Geo-Information 9, nr 11 (4.11.2020): 665. http://dx.doi.org/10.3390/ijgi9110665.
Pełny tekst źródłaVisca, Jorge, i Javier Baliosian. "rl4dtn: Q-Learning for Opportunistic Networks". Future Internet 14, nr 12 (23.11.2022): 348. http://dx.doi.org/10.3390/fi14120348.
Pełny tekst źródłaRozprawy doktorskie na temat "Temporal Algorithms"
Chen, Xiaodong. "Temporal data mining : algorithms, language and system for temporal association rules". Thesis, Manchester Metropolitan University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297977.
Pełny tekst źródłaChen, Feng. "Efficient Algorithms for Mining Large Spatio-Temporal Data". Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/19220.
Pełny tekst źródłagrowing interests. Recent advances on remote sensing technology mean
that massive amounts of spatio-temporal data are being collected,
and its volume keeps increasing at an ever faster pace. It becomes
critical to design efficient algorithms for identifying novel and
meaningful patterns from massive spatio-temporal datasets. Different
from the other data sources, this data exhibits significant
space-time statistical dependence, and the assumption of i.i.d. is
no longer valid. The exact modeling of space-time dependence will
render the exponential growth of model complexity as the data size
increases. This research focuses on the construction of efficient
and effective approaches using approximate inference techniques for
three main mining tasks, including spatial outlier detection, robust
spatio-temporal prediction, and novel applications to real world
problems.
Spatial novelty patterns, or spatial outliers, are those data points
whose characteristics are markedly different from their spatial
neighbors. There are two major branches of spatial outlier detection
methodologies, which can be either global Kriging based or local
Laplacian smoothing based. The former approach requires the exact
modeling of spatial dependence, which is time extensive; and the
latter approach requires the i.i.d. assumption of the smoothed
observations, which is not statistically solid. These two approaches
are constrained to numerical data, but in real world applications we
are often faced with a variety of non-numerical data types, such as
count, binary, nominal, and ordinal. To summarize, the main research
challenges are: 1) how much spatial dependence can be eliminated via
Laplace smoothing; 2) how to effectively and efficiently detect
outliers for large numerical spatial datasets; 3) how to generalize
numerical detection methods and develop a unified outlier detection
framework suitable for large non-numerical datasets; 4) how to
achieve accurate spatial prediction even when the training data has
been contaminated by outliers; 5) how to deal with spatio-temporal
data for the preceding problems.
To address the first and second challenges, we mathematically
validated the effectiveness of Laplacian smoothing on the
elimination of spatial autocorrelations. This work provides
fundamental support for existing Laplacian smoothing based methods.
We also discovered a nontrivial side-effect of Laplacian smoothing,
which ingests additional spatial variations to the data due to
convolution effects. To capture this extra variability, we proposed
a generalized local statistical model, and designed two fast forward
and backward outlier detection methods that achieve a better balance
between computational efficiency and accuracy than most existing
methods, and are well suited to large numerical spatial datasets.
We addressed the third challenge by mapping non-numerical variables
to latent numerical variables via a link function, such as logit
function used in logistic regression, and then utilizing
error-buffer artificial variables, which follow a Student-t
distribution, to capture the large valuations caused by outliers. We
proposed a unified statistical framework, which integrates the
advantages of spatial generalized linear mixed model, robust spatial
linear model, reduced-rank dimension reduction, and Bayesian
hierarchical model. A linear-time approximate inference algorithm
was designed to infer the posterior distribution of the error-buffer
artificial variables conditioned on observations. We demonstrated
that traditional numerical outlier detection methods can be directly
applied to the estimated artificial variables for outliers
detection. To the best of our knowledge, this is the first
linear-time outlier detection algorithm that supports a variety of
spatial attribute types, such as binary, count, ordinal, and
nominal.
To address the fourth and fifth challenges, we proposed a robust
version of the Spatio-Temporal Random Effects (STRE) model, namely
the Robust STRE (R-STRE) model. The regular STRE model is a recently
proposed statistical model for large spatio-temporal data that has a
linear order time complexity, but is not best suited for
non-Gaussian and contaminated datasets. This deficiency can be
systemically addressed by increasing the robustness of the model
using heavy-tailed distributions, such as the Huber, Laplace, or
Student-t distribution to model the measurement error, instead of
the traditional Gaussian. However, the resulting R-STRE model
becomes analytical intractable, and direct application of
approximate inferences techniques still has a cubic order time
complexity. To address the computational challenge, we reformulated
the prediction problem as a maximum a posterior (MAP) problem with a
non-smooth objection function, transformed it to a equivalent
quadratic programming problem, and developed an efficient
interior-point numerical algorithm with a near linear order
complexity. This work presents the first near linear time robust
prediction approach for large spatio-temporal datasets in both
offline and online cases.
Ph. D.
Civelek, Ferda N. (Ferda Nur). "Temporal Connectionist Expert Systems Using a Temporal Backpropagation Algorithm". Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc278824/.
Pełny tekst źródłaZhu, Linhong, Dong Guo, Junming Yin, Steeg Greg Ver i Aram Galstyan. "Scalable temporal latent space inference for link prediction in dynamic social networks (extended abstract)". IEEE, 2017. http://hdl.handle.net/10150/626028.
Pełny tekst źródłaBeaumont, Matthew, i n/a. "Handling Over-Constrained Temporal Constraint Networks". Griffith University. School of Information Technology, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20041213.084512.
Pełny tekst źródłaBeaumont, Matthew. "Handling Over-Constrained Temporal Constraint Networks". Thesis, Griffith University, 2004. http://hdl.handle.net/10072/366603.
Pełny tekst źródłaThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Institute for Integrated and Intelligent Systems
Full Text
Schiratti, Jean-Baptiste. "Methods and algorithms to learn spatio-temporal changes from longitudinal manifold-valued observations". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX009/document.
Pełny tekst źródłaWe propose a generic Bayesian mixed-effects model to estimate the temporal progression of a biological phenomenon from manifold-valued observations obtained at multiple time points for an individual or group of individuals. The progression is modeled by continuous trajectories in the space of measurements, which is assumed to be a Riemannian manifold. The group-average trajectory is defined by the fixed effects of the model. To define the individual trajectories, we introduced the notion of « parallel variations » of a curve on a Riemannian manifold. For each individual, the individual trajectory is constructed by considering a parallel variation of the average trajectory and reparametrizing this parallel in time. The subject specific spatiotemporal transformations, namely parallel variation and time reparametrization, are defined by the individual random effects and allow to quantify the changes in direction and pace at which the trajectories are followed. The framework of Riemannian geometry allows the model to be used with any kind of measurements with smooth constraints. A stochastic version of the Expectation-Maximization algorithm, the Monte Carlo Markov Chains Stochastic Approximation EM algorithm (MCMC-SAEM), is used to produce produce maximum a posteriori estimates of the parameters. The use of the MCMC-SAEM together with a numerical scheme for the approximation of parallel transport is discussed. In addition to this, the method is validated on synthetic data and in high-dimensional settings. We also provide experimental results obtained on health data
Montana, Felipe. "Sampling-based algorithms for motion planning with temporal logic specifications". Thesis, University of Sheffield, 2019. http://etheses.whiterose.ac.uk/22637/.
Pełny tekst źródłaKobakian, Stephanie Rose. "New algorithms for effectively visualising Australian spatio-temporal disease data". Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/203908/1/Stephanie_Kobakian_Thesis.pdf.
Pełny tekst źródłaEriksson, Leif. "Solving Temporal CSPs via Enumeration and SAT Compilation". Thesis, Linköpings universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162482.
Pełny tekst źródłaKsiążki na temat "Temporal Algorithms"
George, Betsy. Spatio-temporal Networks: Modeling and Algorithms. New York, NY: Springer New York, 2013.
Znajdź pełny tekst źródłaStergiou, K. Backtracking algorithms for checking the consistency of temporal constraints. Manchester: UMIST, 1997.
Znajdź pełny tekst źródłaW, Campbell Janet, i Goddard Space Flight Center, red. Level-3 SeaWiFS data products: Spatial and temporal binning algorithms. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1995.
Znajdź pełny tekst źródłaW, Campbell Janet, i Goddard Space Flight Center, red. Level-3 SeaWiFS data products: Spatial and temporal binning algorithms. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1995.
Znajdź pełny tekst źródłaMcGuire, Hugh W. Two methods for checking formulas of temporal logic. Stanford, Calif: Dept. of Computer Science, Stanford University, 1995.
Znajdź pełny tekst źródłaKoukoudakis, Alexandros. Visualisation decision algorithm for temporal database management system. Manchester: UMIST, 1996.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Land surface temperature measurements from EOS MODIS data: Semi-annual report ... for January-June, 1997 : contract number: NAS5-31370. [Washington, DC: National Aeronautics and Space Administration, 1997.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Land surface temperature measurements from EOS MODIS data. [Washington, D.C.]: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Land surface temperature measurements from EOS MODIS data: Semi-annual report ... for January-June, 1995. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Land surface temperature measurements from EOS MODIS data: Semi-annual report ... for July-December, 1997 : contract number NAS5-31370. [Washington, DC: National Aeronautics and Space Administration, 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "Temporal Algorithms"
Gudmundsson, Joachim, Jyrki Katajainen, Damian Merrick, Cahya Ong i Thomas Wolle. "Compressing Spatio-temporal Trajectories". W Algorithms and Computation, 763–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-77120-3_66.
Pełny tekst źródłaEstivill-Castro, Vladimir, i Michael E. Houle. "Fast Randomized Algorithms for Robust Estimation of Location". W Temporal, Spatial, and Spatio-Temporal Data Mining, 77–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45244-3_7.
Pełny tekst źródłaDanda, Umesh Sandeep, G. Ramakrishna, Jens M. Schmidt i M. Srikanth. "On Short Fastest Paths in Temporal Graphs". W WALCOM: Algorithms and Computation, 40–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68211-8_4.
Pełny tekst źródłaFriedler, Sorelle A., i David M. Mount. "Spatio-temporal Range Searching over Compressed Kinetic Sensor Data". W Algorithms – ESA 2010, 386–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15775-2_33.
Pełny tekst źródłaMcGeer, Patrick C., i Robert K. Brayton. "False Path Detection Algorithms". W Integrating Functional and Temporal Domains in Logic Design, 55–95. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3960-5_3.
Pełny tekst źródłaAchtert, Elke, Ahmed Hettab, Hans-Peter Kriegel, Erich Schubert i Arthur Zimek. "Spatial Outlier Detection: Data, Algorithms, Visualizations". W Advances in Spatial and Temporal Databases, 512–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22922-0_41.
Pełny tekst źródłaGago, M. Carmen Fernández, Michael Fisher i Clare Dixon. "Algorithms for Guiding Clausal Temporal Resolution". W KI 2002: Advances in Artificial Intelligence, 235–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45751-8_16.
Pełny tekst źródłaAllard, Denis, Xavier Emery, Céline Lacaux i Christian Lantuéjoul. "Simulation of Stationary Gaussian Random Fields with a Gneiting Spatio-Temporal Covariance". W Springer Proceedings in Earth and Environmental Sciences, 43–49. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19845-8_4.
Pełny tekst źródłaZhang, Zhongnan, i Weili Wu. "Composite Spatio-Temporal Co-occurrence Pattern Mining". W Wireless Algorithms, Systems, and Applications, 454–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-88582-5_43.
Pełny tekst źródłaAkrida, Eleni C., i Paul G. Spirakis. "On Verifying and Maintaining Connectivity of Interval Temporal Networks". W Algorithms for Sensor Systems, 142–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-28472-9_11.
Pełny tekst źródłaStreszczenia konferencji na temat "Temporal Algorithms"
Deb, Rohan, Meet Gandhi i Shalabh Bhatnagar. "Schedule Based Temporal Difference Algorithms". W 2022 58th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2022. http://dx.doi.org/10.1109/allerton49937.2022.9929388.
Pełny tekst źródłaWang, Yuxin, Xiuzhi Li, Zhenyu Jiao i Lei Zhang. "Pedestrian trajectory prediction based on temporal attention". W International Conference on Algorithms, Microchips, and Network Applications, redaktorzy Fengjie Cen i Ning Sun. SPIE, 2022. http://dx.doi.org/10.1117/12.2636485.
Pełny tekst źródłaJun Gao. "Adaptive Interpolation Algorithms for Temporal-Oriented Datasets". W Thirteenth International Symposium on Temporal Representation and Reasoning (TIME'06). IEEE, 2006. http://dx.doi.org/10.1109/time.2006.4.
Pełny tekst źródłaIm, Sungjin, Janardhan Kulkarni i Benjamin Moseley. "Temporal Fairness of Round Robin". W SPAA '15: 27th ACM Symposium on Parallelism in Algorithms and Architectures. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2755573.2755581.
Pełny tekst źródłaSilva, Arlei, Ambuj Singh i Ananthram Swami. "Spectral Algorithms for Temporal Graph Cuts". W the 2018 World Wide Web Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3178876.3186118.
Pełny tekst źródłaGendrano, J. A. G., B. C. Huang, J. M. Rodrigue, Bongki Moon i R. T. Snodgrass. "Parallel algorithms for computing temporal aggregates". W Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337). IEEE, 1999. http://dx.doi.org/10.1109/icde.1999.754958.
Pełny tekst źródłaHao, Yudong, Yang Zhao i Dacheng Li. "Design of temporal phase unwrapping algorithms". W International Symposium on Photonics and Applications, redaktorzy Yee Loy Lam, Koji Ikuta i Metin S. Mangir. SPIE, 1999. http://dx.doi.org/10.1117/12.368502.
Pełny tekst źródłaMeyer, Dominik, Remy Degenne, Ahmed Omrane i Hao Shen. "Accelerated gradient temporal difference learning algorithms". W 2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). IEEE, 2014. http://dx.doi.org/10.1109/adprl.2014.7010611.
Pełny tekst źródłaAllen, Michael, Justyna W. Kosianka i Mark Perillo. "Algorithms for efficient multi-temporal change detection in SAR imagery". W Algorithms for Synthetic Aperture Radar Imagery XXX, redaktorzy Edmund Zelnio i Frederick D. Garber. SPIE, 2023. http://dx.doi.org/10.1117/12.2663997.
Pełny tekst źródłaBollig, Benedikt. "Towards Formal Verification of Distributed Algorithms". W 2015 22nd International Symposium on Temporal Representation and Reasoning (TIME). IEEE, 2015. http://dx.doi.org/10.1109/time.2015.23.
Pełny tekst źródłaRaporty organizacyjne na temat "Temporal Algorithms"
Bornholdt, S., i D. Graudenz. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns. Office of Scientific and Technical Information (OSTI), lipiec 1993. http://dx.doi.org/10.2172/10186812.
Pełny tekst źródłaMiller, William L. Exploring the Temporal and Spatial Dynamics of UV Attenuation and CDOM in the Surface Ocean Using New Algorithms. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2007. http://dx.doi.org/10.21236/ada573066.
Pełny tekst źródłaKularatne, Dhanushka N., Subhrajit Bhattacharya i M. Ani Hsieh. Computing Energy Optimal Paths in Time-Varying Flows. Drexel University, 2016. http://dx.doi.org/10.17918/d8b66v.
Pełny tekst źródłaEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak i Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, lipiec 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Pełny tekst źródłaMcDermott, Drew. An Algorithm for Probabilistic, Totally-Ordered Temporal Projection. Fort Belvoir, VA: Defense Technical Information Center, marzec 1994. http://dx.doi.org/10.21236/ada277341.
Pełny tekst źródłaThost, Veronika, Jan Holste i Özgür Özçep. On Implementing Temporal Query Answering in DL-Lite. Technische Universität Dresden, 2015. http://dx.doi.org/10.25368/2022.218.
Pełny tekst źródłaHorrocks, Ian, i Stephan Tobies. Optimisation of Terminological Reasoning. Aachen University of Technology, 1999. http://dx.doi.org/10.25368/2022.99.
Pełny tekst źródłaHirsch, Colin, i Stephan Tobies. A Tableau Algorithm for the Clique Guarded Fragment. Aachen University of Technology, 1999. http://dx.doi.org/10.25368/2022.106.
Pełny tekst źródłaPrice, Ryan. Hierarchical Temporal Memory Cortical Learning Algorithm for Pattern Recognition on Multi-core Architectures. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.202.
Pełny tekst źródłaLutz, Carsten, i Maja Miličić. A Tableau Algorithm for DLs with Concrete Domains and GCIs. Technische Universität Dresden, 2005. http://dx.doi.org/10.25368/2022.150.
Pełny tekst źródła