Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Temperature-modulated differential scanning calorimetry.

Artykuły w czasopismach na temat „Temperature-modulated differential scanning calorimetry”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Temperature-modulated differential scanning calorimetry”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

ISHIKIRIYAMA, KAZUHIKO. "Temperature Modulated Differential Scanning Calorimetry". FIBER 65, nr 11 (2009): P.428—P.432. http://dx.doi.org/10.2115/fiber.65.p_428.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Van Hemelrijck, A., i B. Van Mele. "Modulated temperature differential scanning calorimetry". Journal of thermal analysis 49, nr 1 (lipiec 1997): 437–42. http://dx.doi.org/10.1007/bf01987467.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Van Assche, G., A. Van Hemelrijck i B. Van Mele. "Modulated temperature differential scanning calorimetry". Journal of thermal analysis 49, nr 1 (lipiec 1997): 443–47. http://dx.doi.org/10.1007/bf01987468.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Jiang, Zhong, Corrie T. Imrie i John M. Hutchinson. "Temperature modulated differential scanning calorimetry. Part I:". Thermochimica Acta 315, nr 1 (maj 1998): 1–9. http://dx.doi.org/10.1016/s0040-6031(98)00270-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Cser, F., F. Rasoul i E. Kosior. "Modulated Differential Scanning Calorimetry". Journal of thermal analysis 50, nr 5-6 (grudzień 1997): 727–44. http://dx.doi.org/10.1007/bf01979203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Roussel, F., i J. M. Buisine. "Modulated differential scanning calorimetry". Journal of Thermal Analysis 47, nr 3 (wrzesień 1996): 715–25. http://dx.doi.org/10.1007/bf01981806.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Reading, M., A. Luget i R. Wilson. "Modulated differential scanning calorimetry". Thermochimica Acta 238 (czerwiec 1994): 295–307. http://dx.doi.org/10.1016/s0040-6031(94)85215-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hourston, D. J., M. Song, H. M. Pollock i A. Hammiche. "Modulated differential scanning calorimetry". Journal of thermal analysis 49, nr 1 (lipiec 1997): 209–18. http://dx.doi.org/10.1007/bf01987441.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Gill, P. S., S. R. Sauerbrunn i M. Reading. "Modulated differential scanning calorimetry". Journal of Thermal Analysis 40, nr 3 (wrzesień 1993): 931–39. http://dx.doi.org/10.1007/bf02546852.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Krüger, Jan, Wolfgang Manglkammer, Andrä le Coutre i Patrick Mesquida. "Differential scanning calorimetry and temperature-modulated differential scanning calorimetry: an extension to lower temperatures". High Temperatures-High Pressures 32, nr 4 (2000): 479–85. http://dx.doi.org/10.1068/htwu580.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Simon, Sindee L. "Temperature-modulated differential scanning calorimetry: theory and application". Thermochimica Acta 374, nr 1 (czerwiec 2001): 55–71. http://dx.doi.org/10.1016/s0040-6031(01)00493-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Ding, E. "Theory of general temperature modulated differential scanning calorimetry". Thermochimica Acta 378, nr 1-2 (24.10.2001): 51–68. http://dx.doi.org/10.1016/s0040-6031(01)00625-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Ozawa, T. "Temperature modulated differential scanning calorimetry-applicability and limitation". Pure and Applied Chemistry 69, nr 11 (1.01.1997): 2315–20. http://dx.doi.org/10.1351/pac199769112315.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Dranca, Ion, i Tudor Lupascu. "Implications of Global and Local Mobility in Amorphous Excipients as Determined by DSC and TM DSC". Chemistry Journal of Moldova 4, nr 2 (grudzień 2009): 105–15. http://dx.doi.org/10.19261/cjm.2009.04(2).02.

Pełny tekst źródła
Streszczenie:
The paper explores the use of differential scanning calorimetry (DSC) and temperature modulated differential scanning calorimetry (TM DSC) to study α- and β- processes in amorphous sucrose and trehalose. The real part of the complex heat capacity is evaluated at the frequencies, f, from 5 to 20mHz. β-relaxations were studied by annealing glassy samples at different temperatures and subsequently heating at different rates in a differential scanning calorimeter.
Style APA, Harvard, Vancouver, ISO itp.
15

Ishikiriyama, K., A. Boller i B. Wunderlich. "Melting of indium by temperature-modulated differential scanning calorimetry". Journal of thermal analysis 50, nr 4 (listopad 1997): 547–58. http://dx.doi.org/10.1007/bf01979027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Ishikiriyama, K., i B. Wunderlich. "Cell asymmetry correction for temperature modulated differential scanning calorimetry". Journal of thermal analysis 50, nr 3 (październik 1997): 337–46. http://dx.doi.org/10.1007/bf01980494.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Wang, Bin, i Qiao Lin. "Temperature-modulated differential scanning calorimetry in a MEMS device". Sensors and Actuators B: Chemical 180 (kwiecień 2013): 60–65. http://dx.doi.org/10.1016/j.snb.2012.02.044.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Leyva-Porras, César, Pedro Cruz-Alcantar, Vicente Espinosa-Solís, Eduardo Martínez-Guerra, Claudia I. Piñón-Balderrama, Isaac Compean Martínez i María Z. Saavedra-Leos. "Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries". Polymers 12, nr 1 (18.12.2019): 5. http://dx.doi.org/10.3390/polym12010005.

Pełny tekst źródła
Streszczenie:
Phase transition issues in the field of foods and drugs have significantly influenced these industries and consequently attracted the attention of scientists and engineers. The study of thermodynamic parameters such as the glass transition temperature (Tg), melting temperature (Tm), crystallization temperature (Tc), enthalpy (H), and heat capacity (Cp) may provide important information that can be used in the development of new products and improvement of those already in the market. The techniques most commonly employed for characterizing phase transitions are thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), and differential scanning calorimetry (DSC). Among these techniques, DSC is preferred because it allows the detection of transitions in a wide range of temperatures (−90 to 550 °C) and ease in the quantitative and qualitative analysis of the transitions. However, the standard DSC still presents some limitations that may reduce the accuracy and precision of measurements. The modulated differential scanning calorimetry (MDSC) has overcome some of these issues by employing sinusoidally modulated heating rates, which are used to determine the heat capacity. Another variant of the MDSC is the supercooling MDSC (SMDSC). SMDSC allows the detection of more complex thermal events such as solid–solid (Ts-s) transitions, liquid–liquid (Tl-l) transitions, and vitrification and devitrification temperatures (Tv and Tdv, respectively), which are typically found at the supercooling temperatures (Tco). The main advantage of MDSC relies on the accurate detection of complex transitions and the possibility of distinguishing reversible events (dependent on the heat capacity) from non-reversible events (dependent on kinetics).
Style APA, Harvard, Vancouver, ISO itp.
19

Grunenfelder, Lessa K., i Steven R. Nutt. "Prepreg age monitoring via differential scanning calorimetry". Journal of Reinforced Plastics and Composites 31, nr 5 (marzec 2012): 295–302. http://dx.doi.org/10.1177/0731684411431020.

Pełny tekst źródła
Streszczenie:
Fabrication of composite parts from prepregs often requires layup and preparation times of days and even weeks, during which prepregs undergo room-temperature aging. The aging process can compromise compaction, tack, and overall quality of composite parts, and thus a need exists for an accurate and convenient method to monitor the extent of prepreg aging as a function of out-time. Here, we report a method to monitor prepreg age, which involves measurement of changes in glass transition temperature as a function of room-temperature aging time. Samples from three out-of-autoclave prepreg systems were aged in ambient conditions and tested periodically using modulated differential scanning calorimetry. A linear increase in glass transition temperature with prepreg age was noted. Results are discussed in the context of monitoring the chemical aging of epoxy resins that occurs at ambient temperature.
Style APA, Harvard, Vancouver, ISO itp.
20

Hutchinson, John M., Ang Boon Tong i Zhong Jiang. "Aging of polycarbonate studied by temperature modulated differential scanning calorimetry". Thermochimica Acta 335, nr 1-2 (wrzesień 1999): 27–42. http://dx.doi.org/10.1016/s0040-6031(99)00134-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Aldén, Maggie, i Anna Hillgren. "Investigation of aqueous solutions by modulated temperature differential scanning calorimetry". Thermochimica Acta 311, nr 1-2 (marzec 1998): 51–60. http://dx.doi.org/10.1016/s0040-6031(97)00475-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Van Den Mooter, Guy, Duncan Q. M. Craig i Paul G. Royall. "Characterization of amorphous ketoconazole using modulated temperature differential scanning calorimetry". Journal of Pharmaceutical Sciences 90, nr 8 (sierpień 2001): 996–1003. http://dx.doi.org/10.1002/jps.1052.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Carpentier, L., O. Bustin i M. Descamps. "Temperature-modulated differential scanning calorimetry as a specific heat spectroscopy". Journal of Physics D: Applied Physics 35, nr 4 (1.02.2002): 402–8. http://dx.doi.org/10.1088/0022-3727/35/4/317.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Liu, Peng, Cai Qin Gu, Qing Zhu Zeng i Hao Huai Liu. "The Extrapolation Method for Hyper Differential Scanning Calorimetry". Advanced Materials Research 554-556 (lipiec 2012): 1994–98. http://dx.doi.org/10.4028/www.scientific.net/amr.554-556.1994.

Pełny tekst źródła
Streszczenie:
In order to eliminate the temperature lag effect and obtain the accurate temperature results from hyper differential scanning calorimetry (Hyper-DSC) operated at high heating rate, an adjustable method, namely “Extrapolation Method”, had been introduced by us in former papers. And in this paper, we wanted to support the accuracy of this method by other instruments. Specifically, the extrapolated glass transition temperatures (Tg, 61.5 °C) of PLA film, which was obtained by Hyper-DSC, was close to the value detected directly by normal DSC (62.0 °C). And the extrapolated Tg of waxy starch film (59.7 °C for 8.7% moisture content, and 57.2 °C for 11.2% moisture content) was close to the values detected by modulated temperature DSC (MT-DSC) (63.6 °C and 56.8 °C correspondingly). Consequently, these experimental results support that the “Extrapolation Method” is a feasible way to eliminate temperature lag effect for Hyper-DSC.
Style APA, Harvard, Vancouver, ISO itp.
25

Shoifet, Evgeni, Gunnar Schulz i Christoph Schick. "Temperature modulated differential scanning calorimetry – extension to high and low frequencies". Thermochimica Acta 603 (marzec 2015): 227–36. http://dx.doi.org/10.1016/j.tca.2014.10.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Loubens, J., i F. Hoppenot. "Contributions of Tzero™ technology to temperature modulated Differential scanning calorimetry". MATEC Web of Conferences 3 (2013): 01025. http://dx.doi.org/10.1051/matecconf/20130301025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Amarasinghe, G., F. Chen, A. Genovese i R. A. Shanks. "Thermal memory of polyethylenes analyzed by temperature modulated differential scanning calorimetry". Journal of Applied Polymer Science 90, nr 3 (18.08.2003): 681–92. http://dx.doi.org/10.1002/app.12694.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Jiang, Zhong, John M. Hutchinson i Corrie T. Imrie. "Temperature-modulated differential scanning calorimetry. Part II. Determination of activation energies". Polymer International 47, nr 1 (wrzesień 1998): 72–75. http://dx.doi.org/10.1002/(sici)1097-0126(199809)47:1<72::aid-pi999>3.0.co;2-n.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Lacey, A. A. "A model for polymer melting during modulated-temperature differential scanning calorimetry". IMA Journal of Applied Mathematics 66, nr 5 (1.10.2001): 449–76. http://dx.doi.org/10.1093/imamat/66.5.449.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Venkata Krishnan, R., i K. Nagarajan. "Evaluation of heat capacity measurements by temperature-modulated differential scanning calorimetry". Journal of Thermal Analysis and Calorimetry 102, nr 3 (9.04.2010): 1135–40. http://dx.doi.org/10.1007/s10973-010-0770-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Hensel, A., i C. Schick. "Temperature calibration of temperature-modulated differential scanning calorimeters". Thermochimica Acta 304-305 (listopad 1997): 229–37. http://dx.doi.org/10.1016/s0040-6031(97)00186-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Cao, Jinan. "Mathematical studies of modulated differential scanning calorimetry". Thermochimica Acta 325, nr 2 (styczeń 1999): 101–9. http://dx.doi.org/10.1016/s0040-6031(98)00559-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Rösgen, Jörg, i Hans-Jürgen Hinz. "Pressure-Modulated Differential Scanning Calorimetry: Theoretical Background". Analytical Chemistry 78, nr 4 (luty 2006): 991–96. http://dx.doi.org/10.1021/ac0516436.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Masson, J.-F., i G. M. Polomark. "Bitumen microstructure by modulated differential scanning calorimetry". Thermochimica Acta 374, nr 2 (lipiec 2001): 105–14. http://dx.doi.org/10.1016/s0040-6031(01)00478-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Toda, Akihiko. "Temperature-Modulated Scanning Calorimetry of Melting–Recrystallization of Poly(butylene terephthalate)". Polymers 13, nr 1 (1.01.2021): 152. http://dx.doi.org/10.3390/polym13010152.

Pełny tekst źródła
Streszczenie:
The melting and recrystallization behaviors of poly(butylene terephthalate) (PBT) were investigated using temperature-modulated scanning calorimetry in both fast- and conventional slow-scan modes. With this method, the response of multiple transition kinetics, such as melting and recrystallization, can be differentiated by utilizing the difference in the time constants of the kinetics. In addition to the previous result of temperature-modulated fast-scan calorimetry of polyethylene terephthalate (PET), the supporting evidence of another aromatic polyester, PBT, confirmed the behavior of the exothermic process of recrystallization, which proceeds simultaneously with melting on heating scan in the temperature range of double melting peaks starting just above the crystallization temperature up to the main melting peak. Because the crystallization of PBT is much more pronounced than that of PET, similar behavior of recrystallization was obtained by the conventional temperature-modulated differential scanning calorimetry at a slow-scan rate.
Style APA, Harvard, Vancouver, ISO itp.
36

Wunderlich, B., A. Boller, I. Okazaki, K. Ishikiriyama, W. Chen, M. Pyda, J. Pak, I. Moon i R. Androsch. "Temperature-modulated differential scanning calorimetry of reversible and irreversible first-order transitions". Thermochimica Acta 330, nr 1-2 (maj 1999): 21–38. http://dx.doi.org/10.1016/s0040-6031(99)00037-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Galovic, S., B. Secerov, S. Trifunovic, D. Milicevic i E. Suljovrujic. "A study of gamma-irradiated polyethylenes by temperature modulated differential scanning calorimetry". Radiation Physics and Chemistry 81, nr 9 (wrzesień 2012): 1374–77. http://dx.doi.org/10.1016/j.radphyschem.2011.11.054.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Baroni, A. F., A. M. Sereno i M. D. Hubinger. "Thermal transitions of osmotically dehydrated tomato by modulated temperature differential scanning calorimetry". Thermochimica Acta 395, nr 1-2 (styczeń 2002): 237–49. http://dx.doi.org/10.1016/s0040-6031(02)00220-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Van Assche, G., A. Van Hemelrijck, H. Rahier i B. Van Mele. "Modulated temperature differential scanning calorimetry: Cure, vitrification, and devitrification of thermosetting systems". Thermochimica Acta 304-305 (listopad 1997): 317–34. http://dx.doi.org/10.1016/s0040-6031(97)00175-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

López-Paz, Jesús, Carlos Gracia-Fernández, Silvia Gómez-Barreiro, Jorge López-Beceiro, Javier Nebreda i Ramón Artiaga. "Study of bitumen crystallization by temperature-modulated differential scanning calorimetry and rheology". Journal of Materials Research 27, nr 10 (20.03.2012): 1410–16. http://dx.doi.org/10.1557/jmr.2012.73.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Gunaratne, L. M. W. K., i R. A. Shanks. "Thermal memory of poly(3-hydroxybutyrate) using temperature-modulated differential scanning calorimetry". Journal of Polymer Science Part B: Polymer Physics 44, nr 1 (2005): 70–78. http://dx.doi.org/10.1002/polb.20676.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Khatiwada, Bal K., Boonta Hetayothin i Frank D. Blum. "Thermal Properties of PMMA on Silica Using Temperature-Modulated Differential Scanning Calorimetry". Macromolecular Symposia 327, nr 1 (maj 2013): 20–28. http://dx.doi.org/10.1002/masy.201350502.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Lacey, A. A., i C. V. Nikolopoulos. "A 1D model for polymer melting during modulated temperature differential scanning calorimetry". IMA Journal of Applied Mathematics 71, nr 2 (1.04.2006): 186–209. http://dx.doi.org/10.1093/imamat/hxh096.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Okazaki, Iwao, i Bernhard Wunderlich. "Reversible Melting in Polymer Crystals Detected by Temperature-Modulated Differential Scanning Calorimetry". Macromolecules 30, nr 6 (marzec 1997): 1758–64. http://dx.doi.org/10.1021/ma961539d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Srikaeo, Khongsak, John E. Furst, John F. Ashton, Robert W. Hosken i Peter A. Sopade. "Wheat grain cooking process as investigated by modulated temperature differential scanning calorimetry". Carbohydrate Polymers 61, nr 2 (sierpień 2005): 203–10. http://dx.doi.org/10.1016/j.carbpol.2005.05.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Coleman, N. "Modulated temperature differential scanning calorimetry: A novel approach to pharmaceutical thermal analysis". International Journal of Pharmaceutics 135, nr 1-2 (17.06.1996): 13–29. http://dx.doi.org/10.1016/0378-5173(95)04463-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Lacey, A. A., C. Nikolopoulos i M. Reading. "A mathematical model for Modulated Differential Scanning Calorimetry". Journal of thermal analysis 50, nr 1-2 (wrzesień 1997): 279–333. http://dx.doi.org/10.1007/bf01979568.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

PIELICHOWSKI, KRZYSZTOF, i KINGA FLEJTUCH. "http://en.www.ichp.pl/Application-of-modulated-differential-scanning-calorimetry-". Polimery 47, nr 11/12 (listopad 2002): 784–92. http://dx.doi.org/10.14314/polimery.2002.784.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Bloxham, Joseph C., Joseph Hogge, Neil F. Giles, Thomas A. Knotts i W. Vincent Wilding. "Modulated Differential Scanning Calorimetry Measurements of 27 Compounds". Journal of Chemical & Engineering Data 66, nr 7 (10.06.2021): 2773–82. http://dx.doi.org/10.1021/acs.jced.1c00171.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Chang, S. S. "Temperature gradient in differential scanning calorimetry". Thermochimica Acta 178 (kwiecień 1991): 195–201. http://dx.doi.org/10.1016/0040-6031(91)80310-f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii