Gotowa bibliografia na temat „Temperature-modulated differential scanning calorimetry”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Temperature-modulated differential scanning calorimetry”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Temperature-modulated differential scanning calorimetry"

1

ISHIKIRIYAMA, KAZUHIKO. "Temperature Modulated Differential Scanning Calorimetry." FIBER 65, no. 11 (2009): P.428—P.432. http://dx.doi.org/10.2115/fiber.65.p_428.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Van Hemelrijck, A., and B. Van Mele. "Modulated temperature differential scanning calorimetry." Journal of thermal analysis 49, no. 1 (July 1997): 437–42. http://dx.doi.org/10.1007/bf01987467.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Van Assche, G., A. Van Hemelrijck, and B. Van Mele. "Modulated temperature differential scanning calorimetry." Journal of thermal analysis 49, no. 1 (July 1997): 443–47. http://dx.doi.org/10.1007/bf01987468.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Jiang, Zhong, Corrie T. Imrie, and John M. Hutchinson. "Temperature modulated differential scanning calorimetry. Part I:." Thermochimica Acta 315, no. 1 (May 1998): 1–9. http://dx.doi.org/10.1016/s0040-6031(98)00270-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Cser, F., F. Rasoul, and E. Kosior. "Modulated Differential Scanning Calorimetry." Journal of thermal analysis 50, no. 5-6 (December 1997): 727–44. http://dx.doi.org/10.1007/bf01979203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Roussel, F., and J. M. Buisine. "Modulated differential scanning calorimetry." Journal of Thermal Analysis 47, no. 3 (September 1996): 715–25. http://dx.doi.org/10.1007/bf01981806.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Reading, M., A. Luget, and R. Wilson. "Modulated differential scanning calorimetry." Thermochimica Acta 238 (June 1994): 295–307. http://dx.doi.org/10.1016/s0040-6031(94)85215-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hourston, D. J., M. Song, H. M. Pollock, and A. Hammiche. "Modulated differential scanning calorimetry." Journal of thermal analysis 49, no. 1 (July 1997): 209–18. http://dx.doi.org/10.1007/bf01987441.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Gill, P. S., S. R. Sauerbrunn, and M. Reading. "Modulated differential scanning calorimetry." Journal of Thermal Analysis 40, no. 3 (September 1993): 931–39. http://dx.doi.org/10.1007/bf02546852.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Krüger, Jan, Wolfgang Manglkammer, Andrä le Coutre, and Patrick Mesquida. "Differential scanning calorimetry and temperature-modulated differential scanning calorimetry: an extension to lower temperatures." High Temperatures-High Pressures 32, no. 4 (2000): 479–85. http://dx.doi.org/10.1068/htwu580.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Temperature-modulated differential scanning calorimetry"

1

Nikolopoulos, Christos. "Mathematical modelling of modulated-temperature differential scanning calorimetry." Thesis, Heriot-Watt University, 1997. http://hdl.handle.net/10399/659.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Jiang, Zhong. "Temperature modulated differential scanning calorimetry : modelling and applications." Thesis, University of Aberdeen, 2000. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU603190.

Pełny tekst źródła
Streszczenie:
The research described in this thesis focused on the TMDSC technique with respect to both theoretical problems and applications. Theoretically, modelling work has been performed to address the effects of heat transfer in the measuring cell on both dynamic and quasi-isothermal TMDSC experiments. The problems of heat transfer generally influence the measured complex heat capacity and phase angle values, but eventually affect the precise measurements of other frequency dependent quantities such as the in-phase and out-of-phase heat capacities. A procedure has been suggested to correct the measure
Style APA, Harvard, Vancouver, ISO itp.
3

Song, Mo. "Applications of modulated-temperature differential scanning calorimetry to multi-component polymer materials." Thesis, Lancaster University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337256.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Hill, Vivienne Lucy. "An investigation into the use of MTDSC as a technique for the characterisation of pharmaceutical materials." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322735.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kirby, Erin. "Study of low temperature nondenaturational conformational change of bovine alpha-chymotrypsin by slow- scanrate differential scanning calorimetry." Thesis, Texas Woman's University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1550669.

Pełny tekst źródła
Streszczenie:
<p> Slow-scan-rate differential scanning calorimetry of enzymes can detect conformational changes which are under kinetic control and not observable at standard scan rates. This method detected a nondenaturational conformational change of bovine &agr;-chymotrypsin at 286 K. This temperature occurs between bovine physiological temperature of 312 K and x-ray crystallography temperature, typically 277 K. This suggests that there are two conformers of &agr;-chymotrypsin, a low temperature conformation and a physiological temperature conformation. The low-temperature to physiological-temperature co
Style APA, Harvard, Vancouver, ISO itp.
6

Almutairi, Badriah Saad. "Correlating Melt Dynamics with Glass Topological Phases in Especially Homogenized Equimolar GexAsxS100-2x Glasses using Raman Scattering, Modulated- Differential Scanning Calorimetry and Volumetric Experiments." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1593272974284834.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Chbeir, Ralph. "Correlating Melt Dynamics with Topological Phases of Homogeneous Chalcogenide- and Modified Oxide- Glasses Using Raman Scattering, Infra-Red Spectroscopy, Modulated-Differential Scanning Calorimetry and Volumetric Experiments." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1573224465185235.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Zhu, Xiaoyi. "Prediction of Specific Heat Capacity of Food Lipids and Foods." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437750532.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lele, Stephen, and slele@bigpond net au. "Additives on the Curing of Phenolic Novolak Composites." RMIT University. Applied Sciences, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070205.095402.

Pełny tekst źródła
Streszczenie:
The research programme studied the cure reaction of a phenolic novolak resin and the effects of various additives and fillers on the reaction. The programme utilised the recently developed thermal analysis technique of temperature-modulated differential scanning calorimetry (TMDSC) performed in conjunction with other available thermal analysis techniques. TMDSC enables the signal for the heat of reaction to be separated from the underlying specific heat change in the resin. This meant that the reaction could be studied without interference from any physical changes in the resin.
Style APA, Harvard, Vancouver, ISO itp.
10

Dash, Shreeram J. "Aging of Selenium glass probed by MDSC and Raman Scattering Experiments: Growth of inter-chain structural correlations leading to network compaction." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1490354472387536.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Temperature-modulated differential scanning calorimetry"

1

Reading, Mike, and Douglas J. Hourston, eds. Modulated Temperature Differential Scanning Calorimetry. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-3750-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Reading, Mike, and Douglas J. Hourston. Modulated Temperature Differential Scanning Calorimetry: Theoretical and Practical Applications in Polymer Characterisation. Springer, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Mike, Reading, and Hourston Douglas J, eds. Modulated temperature differential scanning calorimetry: Theoretical and practical applications in polymer characterisation. Dordrecht: Springer, 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

(Editor), Mike Reading, and Douglas J. Hourston (Editor), eds. Modulated Temperature Differential Scanning Calorimetry: Theoretical and Practical Applications in Polymer Characterisation (Hot Topics in Thermal Analysis and Calorimetry). Springer, 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Temperature-modulated differential scanning calorimetry"

1

van Ekenstein, G. O. R. Alberda, G. ten Brinke, and T. S. Ellis. "Polymer—Polymer Miscibility Investigated by Temperature Modulated Differential Scanning Calorimetry." In ACS Symposium Series, 218–27. Washington, DC: American Chemical Society, 1999. http://dx.doi.org/10.1021/bk-1998-0710.ch015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Van Mele, Bruno, Hubert Rahier, Guy Van Assche, and Steven Swier. "The Application of Modulated Temperature Differential Scanning Calorimetry for the Characterisation of Curing Systems." In Hot Topics in Thermal Analysis and Calorimetry, 83–160. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-3750-3_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Charoenrein, S., N. Harnkarnsujarit, N. Lowithun, and K. Rengsutthi. "Glass Transition Temperature of Some Thai Fruits Using Differential Scanning Calorimetry: Influence of Annealing and Sugar Composition." In Food Engineering Series, 413–20. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2578-0_35.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Okamoto, Kouji, Motoko Kanematsu, Kazunari Arima, Yuko Uemura, Kozue Kaibara, Shintarou Yamamoto, Hiroaki Kodama, and Michio Kondo. "Studies of differential scanning calorimetry and temperature profile for turbidity formation on self-assembly of elastin peptides." In Peptide Chemistry 1992, 399–401. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1474-5_118.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Busserolles, K., G. Roux-Desgranges, and A. H. Roux. "Differential Scanning Calorimetry (DSC) and Temperature Dependence of the Electrical Conductivity in the Ternary System: Water + CTAB + Phenol." In Thermodynamic Modeling and Materials Data Engineering, 143–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72207-3_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kett, Vicky, John Murphy, Duncan Craig, and Mike Reading. "Modulated Temperature Differential Scanning Calorimetry." In Thermal Analysis of Pharmaceuticals, 101–38. CRC Press, 2006. http://dx.doi.org/10.1201/9781420014891.ch4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Martinho Simões, José A., and Manuel Minas da Piedade. "Differential Scanning Calorimetry (DSC)." In Molecular Energetics. Oxford University Press, 2008. http://dx.doi.org/10.1093/oso/9780195133196.003.0016.

Pełny tekst źródła
Streszczenie:
Physical and chemical changes may often be induced by raising or lowering the temperature of a substance. Typical examples are phase transitions, such as fusion, or chemical reactions, such as the solid state polymerization of sodium chloroacetate, which has an onset at 471 K: ClCH2COONa (cr) ⇋ NaCl (cr) + 1/n − (CH2COO)n − (pol) Differential scanning calorimetry (DSC) was designed to obtain the enthalpy or the internal energy of those processes and also to measure temperature-dependent properties of substances, such as the heat capacity. This is done by monitoring the change of the difference between the heat flow rate or power to a sample (S) and to a reference material (R), ΔΦ = ΦS − ΦR = (dQ/dt)S − (dQ/dt)R, as a function of time or temperature, while both S and R are subjected to a controlled temperature program. The temperature is usually increased or decreased linearly at a predetermined rate, but the apparatus can also be used isothermally. In some cases DSC experiments may provide kinetic data. According to Wunderlich, differential scanning calorimeters evolved from the differential thermal analysis (DTA) instruments built by Kurnakov at the beginning of the twentieth century. In these early DTA apparatus, the temperature difference between a sample and a reference, simultaneously heated by a single heat source, was measured as a function of time. No calorimetric data could be derived, and the instruments were used, for example, to determine the temperatures of phase transitions and to identify metals, oxides, minerals, soils, and foods. The attempts to obtain calorimetric data from DTA instruments eventually led to the development of DSC. The term differential scanning calorimetry and the acronym DSC were coined in 1963 when the first commercial instrument of this type became available. This apparatus was easy to operate, enabled fast experiments, and required only small samples (typically 5–10 mg). Its importance for materials characterization was immediately demonstrated and the DSC technique soon experienced a boom. New user-friendly commercial instruments were developed, and new applications were explored. It is, however, somewhat ironic that the method ows its still growing popularity to analytical rather than calorimetric uses.
Style APA, Harvard, Vancouver, ISO itp.
8

Schick, C. "Temperature modulated differential scanning calorimetry (TMDSC) – basics and applications to polymers." In Applications to Polymers and Plastics, 713–810. Elsevier, 2002. http://dx.doi.org/10.1016/s1573-4374(02)80019-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Ezrahi, Shmaryahu, Abraham Aserin, and Nissim Garti. "Investigation of Amphiphilic Systems by Subzero Temperature Differential Scanning Calorimetry." In Adsorption and Aggregation of Surfactants in Solution, 105–31. CRC Press, 2002. http://dx.doi.org/10.1201/9780203910573.ch5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kessler, Olaf, Benjamin Milkereit, and Christoph Schick. "Quench Sensitivity and Continuous Cooling Precipitation Diagrams." In Encyclopedia of Aluminum and Its Alloys. Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9781351045636-140000288.

Pełny tekst źródła
Streszczenie:
The application properties of metallic materials are frequently adjusted by heat treatments utilizing controlled microstructural changes—i.e., solid–solid phase transformations like nondiffusional martensitic transformation or diffusional secondary phase precipitation and/or dissolution. For technical application, knowledge about the characteristic temperatures and times but moreover about their time dependence (kinetics) is required. As the relevant solid–solid phase transformations all show a heat effect (e.g., precipitation → exothermic; dissolution → endothermic), one outstanding measurement technique to follow these phase transformations is calorimetry, particularly differential scanning calorimetry (DSC). Appropriate combinations of DSC methods and devices to cover nine orders of magnitude in heating and cooling rates (10−4–105 K/s) will be introduced, using dissolution and precipitation reactions in aluminum alloys as examples. Basically, these techniques allow one to record time–temperature transformation (or precipitation/dissolution) diagrams for various materials during heating, isothermal annealing, and even during continuous cooling, making DSC a very powerful tool for the investigation of solid–solid phase transformations. Nowadays, physically based models verified with DSC results moreover allow one to predict precipitation volume fractions and solute mass fractions.
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Temperature-modulated differential scanning calorimetry"

1

PAIVA, F. L., V. M. A. CALADO, and F. H. MARCHESINI. "ON THE USE OF MODULATED TEMPERATURE DIFFERENTIAL SCANNING CALORIMETRY TO ASSESS WAX CRYSTALLIZATION IN CRUDE OILS. PART II: COMBINING RHEOMETRY, MICROSCOPY AND MODULATED TEMPERATURE DIFFERENTIAL SCANNING CALORIMETRY." In XXII Congresso Brasileiro de Engenharia Química. São Paulo: Editora Blucher, 2018. http://dx.doi.org/10.5151/cobeq2018-co.022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

PAIVA, F. L., V. M. A. CALADO, and F. H. MARCHESINI. "ON THE USE OF MODULATED TEMPERATURE DIFFERENTIAL SCANNING CALORIMETRY TO ASSESS WAX CRYSTALLIZATION IN CRUDE OILS. PART II: COMBINING RHEOMETRY, MICROSCOPY AND MODULATED TEMPERATURE DIFFERENTIAL SCANNING CALORIMETRY." In XXII Congresso Brasileiro de Engenharia Química. São Paulo: Editora Blucher, 2018. http://dx.doi.org/10.5151/cobeq2018-co.085.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Wang, Hsin, M. Pyda, R. Androsch, and Bernhard Wunderlich. "Application of IR imaging during temperature-modulated differential scanning calorimetry (TMDSC) measurements." In AeroSense 2002, edited by Xavier P. Maldague and Andres E. Rozlosnik. SPIE, 2002. http://dx.doi.org/10.1117/12.459610.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Bricker, Ryan M., and Simon A. M. Hesp. "Modulated Differential Scanning Calorimetry Study of Physical Hardening Rates in Asphalt Cements." In 2013 Airfield & Highway Pavement Conference. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784413005.079.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Lu, Daoqiang Daniel, Chuan Hu, and Annie Tzu-Yu Huang. "Forming High Temperature Solder Interfaces by Low Temperature Fluxless Processing." In ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33197.

Pełny tekst źródła
Streszczenie:
This paper provides a fundamental study of large area, fluxless bonding with three different solder systems Cu-Sn, Ag-In, and Ag-SnBi, which were pre-deposited in layered structures. The thickness of each individual layer was carefully designed such that, after bonding and annealing at lower temperatures, the final solder interface only had high melting point components and showed higher re-melting points. A systematic bonding study was conducted, and re-melting points and microstructure of the formed solder interface were studied using differential scanning calorimetry (DSC), and scanning ele
Style APA, Harvard, Vancouver, ISO itp.
6

Sabau, Adrian S., and Wallace D. Porter. "Analytical Models for the Systematic Errors of Differential Scanning Calorimetry Instruments." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56745.

Pełny tekst źródła
Streszczenie:
Differential Scanning Calorimetry (DSC) measurements are routinely used to determine enthalpies of phase change, phase transition temperatures, glass transition temperatures, and heat capacities. In order to obtain data on the amount of phases during phase change, time-temperature lags, which are inherent to the measurement process, must be estimated through a computational analysis. An analytical model is proposed for the systematic error of the instrument. Numerical simulation results are compared against experimental data obtained at different heating and cooling rates.
Style APA, Harvard, Vancouver, ISO itp.
7

Bondariev, Vitalii. "High-temperature thermogravimetric analysis and differential scanning calorimetry of nanocomposites (FeCoZr)x(CaF2)100-x." In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016, edited by Ryszard S. Romaniuk. SPIE, 2016. http://dx.doi.org/10.1117/12.2249279.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Aksan, Alptekin, and Mehmet Toner. "Glass Formation During Room Temperature, Isothermal Drying." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43049.

Pełny tekst źródła
Streszczenie:
Isothermal drying and glass transition of solutions and films have drawn considerable attention from many industries. We here explore the feasibility of modifying the isothermal drying and vitrification kinetics of carbohydrate solutions in order to ensure the stability and quality of their ingredients. Modulated Differential Scanning Calorimetry experiments with isothermally dried trehalose and trehalose/dextran solutions were performed and the glass transition kinetics have been determined. Three distinct drying regimes were observed. With isothermal, isobaric drying at 0%RH, it was indeed p
Style APA, Harvard, Vancouver, ISO itp.
9

Bakhtiyarov, Sayavur I., Elguja R. Kutelia, and Dennis A. Siginer. "Thermometric Studies of Newly Developed Nanolubricants." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65040.

Pełny tekst źródła
Streszczenie:
One of the primary requirements of space lubricants is that they have extremely low vapor pressures to withstand the space vacuum environment. Nanolubricants are known to have extremely low vapor pressure and some have attractive lubricant properties such as low coefficient of friction and good lifetimes. However, many other physical properties need to be evaluated in bringing forth new space liquid lubricants such as wide liquid temperature range and adequate heat transmission capabilities. The heat capacity and heat flow measurements for two newly developed nanolubricants Kolkhida 1 and Kolk
Style APA, Harvard, Vancouver, ISO itp.
10

Ye, Changqing, Qiulin Li, Ping Wu, Guoyi Tang, and Wei Liu. "Measurements of Fine Structures in the Lead-Bismuth Eutectic Alloy Melts by Differential Scanning Calorimetry." In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60338.

Pełny tekst źródła
Streszczenie:
The implementation of the Generation IV nuclear reactors and a spallation target of the accelerated driven system (ADS) concerning to the use of liquid lead-bismuth eutectic (LBE) alloy. The liquid LBE alloy should be fully characterized and especially its physical properties should be completely known to make sure the nuclear safety. Differential scanning calorimetry (DSC) experiments were employed on LBE alloy at a temperature range of room temperature (RT) to 500°C to detect the structure phase transition and obtain the thermal effect of LBE alloy. The results of DSC curves showed that ther
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Temperature-modulated differential scanning calorimetry"

1

Edgar, Alexander Steven. A Modulated Differential Scanning Calorimetry Method for Characterization of Poly(ester urethane) Elastomer. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1427360.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Story, Natasha Claire. Investigating the Thermal Behavior of Polymers by Modulated Differential Scanning Calorimetry (MDSC) – A Review. Office of Scientific and Technical Information (OSTI), June 2020. http://dx.doi.org/10.2172/1633549.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Coker, Eric. The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1096501.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Steele, W. V., R. D. Chirico, S. E. Knipmeyer, and N. K. Smith. High-temperature heat-capacity measurements and critical property determinations using a Differential Scanning Calorimeter: Results of measurements on toluene, tetralin, and JP-10. Office of Scientific and Technical Information (OSTI), June 1989. http://dx.doi.org/10.2172/6271949.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!