Artykuły w czasopismach na temat „Temperature dependent electrical transport”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Temperature dependent electrical transport”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Sallam, M. M., B. A. El-Sayed, and A. A. Abdel-Shafi. "The temperature dependent electrical transport in biphenyl derivatives." Current Applied Physics 6, no. 1 (2006): 71–75. http://dx.doi.org/10.1016/j.cap.2004.12.006.
Pełny tekst źródłaWu, H. Y., W. Wang, and W. J. Lu. "Temperature-dependent electrical transport mechanism in amorphous Ge2Sb2Te5films." physica status solidi (b) 253, no. 9 (2016): 1855–60. http://dx.doi.org/10.1002/pssb.201600045.
Pełny tekst źródłaVAISH, RAHUL, and KALIDHINDI B. R. VARMA. "ELECTRICAL TRANSPORT STUDIES IN 3Na2O–6.5B2O3 GLASSES." Journal of Advanced Dielectrics 01, no. 03 (2011): 331–36. http://dx.doi.org/10.1142/s2010135x11000355.
Pełny tekst źródłaMuchharla, Baleeswaraiah, T. N. Narayanan, Kaushik Balakrishnan, Pulickel M. Ajayan, and Saikat Talapatra. "Temperature dependent electrical transport of disordered reduced graphene oxide." 2D Materials 1, no. 1 (2014): 011008. http://dx.doi.org/10.1088/2053-1583/1/1/011008.
Pełny tekst źródłaSinha, S., P. L. Srivastava, and R. N. Singh. "Temperature-dependent structure and electrical transport in liquid metals." Journal of Physics: Condensed Matter 1, no. 9 (1989): 1695–705. http://dx.doi.org/10.1088/0953-8984/1/9/014.
Pełny tekst źródłaLi, Zhen, Yongsen Han, Ji Liu, Daomin Min, and Shengtao Li. "Investigation of temperature-dependent DC breakdown mechanism of EP/TiO2 nanocomposites." Applied Physics Letters 121, no. 5 (2022): 052901. http://dx.doi.org/10.1063/5.0097351.
Pełny tekst źródłaPark, Jae Young, Hwangyou Oh, Ju-Jin Kim, and Sang Sub Kim. "The temperature-dependent electrical transport mechanism of single ZnO nanorods." Nanotechnology 17, no. 5 (2006): 1255–59. http://dx.doi.org/10.1088/0957-4484/17/5/016.
Pełny tekst źródłaSahu, A. K., S. K. Satpathy, and Banarji Behera. "Dielectric and frequency-dependent transport properties of lanthanum-doped bismuth ferrite." Journal of Advanced Dielectrics 09, no. 04 (2019): 1950031. http://dx.doi.org/10.1142/s2010135x19500310.
Pełny tekst źródłaHui, Zhenzhen, Xuzhong Zuo, Longqiang Ye, Xuchun Wang, and Xuebin Zhu. "Solution Processable CrN Thin Films: Thickness-Dependent Electrical Transport Properties." Materials 13, no. 2 (2020): 417. http://dx.doi.org/10.3390/ma13020417.
Pełny tekst źródłaZhang, Tong, Liuan Li, and Jin-Ping Ao. "Temperature-dependent electrical transport characteristics of a NiO/GaN heterojunction diode." Surfaces and Interfaces 5 (December 2016): 15–18. http://dx.doi.org/10.1016/j.surfin.2016.08.004.
Pełny tekst źródłaThakur, Vanita, Anupinder Singh, A. M. Awasthi, and Lakhwant Singh. "Temperature dependent electrical transport characteristics of BaTiO3 modified lithium borate glasses." AIP Advances 5, no. 8 (2015): 087110. http://dx.doi.org/10.1063/1.4928339.
Pełny tekst źródłaGao, Jia, and Yueh-Lin Lynn Loo. "Temperature-Dependent Electrical Transport in Polymer-Sorted Semiconducting Carbon Nanotube Networks." Advanced Functional Materials 25, no. 1 (2014): 105–10. http://dx.doi.org/10.1002/adfm.201402407.
Pełny tekst źródłaCampos, M. "Electrical Transport Properties of Doped Poly (p-phenylene)." Polymers and Polymer Composites 11, no. 5 (2003): 407–14. http://dx.doi.org/10.1177/096739110301100506.
Pełny tekst źródłaBaral, P. C. "Study of frequency- and temperature-dependent electrical transport in heavy fermion systems." International Journal of Modern Physics B 31, no. 12 (2017): 1750081. http://dx.doi.org/10.1142/s0217979217500813.
Pełny tekst źródłaPatel, A. B., N. K. Bhatt, B. Y. Thakore, P. R. Vyas, and A. R. Jani. "The temperature-dependent electrical transport properties of liquid Sn using pseudopotential theory." Molecular Physics 112, no. 15 (2014): 2000–2004. http://dx.doi.org/10.1080/00268976.2013.877169.
Pełny tekst źródłaSingh, Deependra Kumar, Rohit Pant, Basanta Roul, Arun Malla Chowdhury, Karuna Kar Nanda, and Saluru Baba Krupanidhi. "Temperature-Dependent Electrical Transport and Optoelectronic Properties of SnS2/p-Si Heterojunction." ACS Applied Electronic Materials 2, no. 7 (2020): 2155–63. http://dx.doi.org/10.1021/acsaelm.0c00362.
Pełny tekst źródłaThakur, Sonika, Parminder Kaur, Kusum Devgan, and Lakhwant Singh. "Temperature Dependent Electrical Transport Characteristics of Polyaniline Films Modified with Gold nanoparticles." Materials Today: Proceedings 18 (2019): 1329–35. http://dx.doi.org/10.1016/j.matpr.2019.06.597.
Pełny tekst źródłaRoul, Basanta, Mohana K. Rajpalke, Thirumaleshwara N. Bhat, et al. "Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes." Journal of Applied Physics 109, no. 4 (2011): 044502–044502. http://dx.doi.org/10.1063/1.3549685.
Pełny tekst źródłaBURKOV, A. T., E. BAUER, E. GRATZ, and R. RESEL. "THERMOPOWER AND ELECTRICAL RESISTIVITY OF LaxY1−xAl2 ALLOYS." International Journal of Modern Physics B 07, no. 01n03 (1993): 387–90. http://dx.doi.org/10.1142/s0217979293000822.
Pełny tekst źródłaJin, Seung Hyun, and Young Soo Lim. "Effect of Zn-Doping on the Phase Transition Behavior and Thermoelectric Transport Properties of Cu2Se." Korean Journal of Metals and Materials 58, no. 7 (2020): 466–71. http://dx.doi.org/10.3365/kjmm.2020.58.7.466.
Pełny tekst źródłaMahmood, K., and Nadeem Sabir. "Interface-Controlled Carrier Transport in Metal-Lutetium Oxide-Metal Structures Deposited by Electron-Beam Evaporation Technique." MRS Advances 2, no. 44 (2017): 2373–78. http://dx.doi.org/10.1557/adv.2017.322.
Pełny tekst źródłaMaffia, M., R. Acierno, E. Cillo, and C. Storelli. "Na(+)-D-glucose cotransport by intestinal BBMVs of the Antarctic fish Trematomus bernacchii." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 271, no. 6 (1996): R1576—R1583. http://dx.doi.org/10.1152/ajpregu.1996.271.6.r1576.
Pełny tekst źródłaThakur, Seema, Vanita Thakur, Anumeet Kaur, and Lakhwant Singh. "Temperature dependent electrical transport behavior of (100-x)Bi2O3-x(BaTiO3) glass system." Solid State Sciences 121 (November 2021): 106749. http://dx.doi.org/10.1016/j.solidstatesciences.2021.106749.
Pełny tekst źródłaGaewdang, T., and Ng Wongcharoen. "Temperature-dependent electrical transport characteristics of p-SnS/n-WO3:Sb heterojunction diode." IOP Conference Series: Materials Science and Engineering 383 (July 2018): 012006. http://dx.doi.org/10.1088/1757-899x/383/1/012006.
Pełny tekst źródłaDogan, Hulya, and Sezai Elagoz. "Temperature-dependent electrical transport properties of (Au/Ni)/n-GaN Schottky barrier diodes." Physica E: Low-dimensional Systems and Nanostructures 63 (September 2014): 186–92. http://dx.doi.org/10.1016/j.physe.2014.04.019.
Pełny tekst źródłaKhan, Hasan M., M. U. Islam, Yongbing Xu, et al. "Electrical transport properties and temperature-dependent magnetization behavior of TbZn-substituted Ca0.5Ba0.5Fe12O19 hexaferrites." Journal of Sol-Gel Science and Technology 78, no. 1 (2015): 151–58. http://dx.doi.org/10.1007/s10971-015-3907-x.
Pełny tekst źródłaZhang, Xiao-Wen, Dan Xie, Jian-Long Xu, et al. "Temperature-dependent electrical transport properties in graphene/Pb(Zr0.4Ti0.6)O3 field effect transistors." Carbon 93 (November 2015): 384–92. http://dx.doi.org/10.1016/j.carbon.2015.05.064.
Pełny tekst źródłaMahmood, Aamir, and Asghari Maqsood. "Temperature and frequency-dependent electrical transport studies of manganese-doped zinc ferrite nanoparticles." Materials Science and Engineering: B 296 (October 2023): 116615. http://dx.doi.org/10.1016/j.mseb.2023.116615.
Pełny tekst źródłaSaron, K. M. A., M. R. Hashim, M. Ibrahim, M. Yahyaoui, and Nageh K. Allam. "Temperature-dependent transport properties of CVD-fabricated n-GaN nanorods/p-Si heterojunction devices." RSC Advances 10, no. 55 (2020): 33526–33. http://dx.doi.org/10.1039/d0ra05973k.
Pełny tekst źródłaKUMAR, VINOD, RAJESH KUMAR, and RAVI KUMAR. "STRUCTURAL AND ELECTRICAL PROPERTIES OF LaCo1-xNixO3." International Journal of Modern Physics: Conference Series 22 (January 2013): 351–54. http://dx.doi.org/10.1142/s2010194513010350.
Pełny tekst źródłaLim, Jungmoon, Gahyun Ahn, Inho Jeong, and Hyunwook Song. "Temperature-Dependent Charge Transport of Large-Area Molecular Junctions with PEDOT:PSS Electrodes." Science of Advanced Materials 12, no. 3 (2020): 333–36. http://dx.doi.org/10.1166/sam.2020.3645.
Pełny tekst źródłaYou, Li, Jiye Zhang, Shanshan Pan, et al. "Realization of higher thermoelectric performance by dynamic doping of copper in n-type PbTe." Energy & Environmental Science 12, no. 10 (2019): 3089–98. http://dx.doi.org/10.1039/c9ee01137d.
Pełny tekst źródłaKhamaj, Jabril A. "Influence of ion irradiation on temperature dependent electrical transport behavior of thin graphite flakes." Materials Science-Poland 34, no. 2 (2016): 399–403. http://dx.doi.org/10.1515/msp-2016-0049.
Pełny tekst źródłaChakraverty, Mayank, and V. N. Ramakrishnan. "Temperature Dependent Carrier Transport in Hydrogenated Amorphous Semiconductors for Thin Film Memristive Applications." Materials Science Forum 1048 (January 4, 2022): 182–88. http://dx.doi.org/10.4028/www.scientific.net/msf.1048.182.
Pełny tekst źródłaManeesai, Keerati, Kanyapak Silakaew, Sunisar Khammahong, et al. "Temperature-dependent electrical transport, Hall effect, and Seebeck properties of bulk chemically reduced graphene oxide with bipolar charge carrier materials." AIP Advances 13, no. 3 (2023): 035333. http://dx.doi.org/10.1063/5.0142476.
Pełny tekst źródłaAbbas, Muhammad Sabbtain, Pawan Kumar Srivastava, Yasir Hassan, and Changgu Lee. "Asymmetric carrier transport and weak localization in few layer graphene grown directly on a dielectric substrate." Physical Chemistry Chemical Physics 23, no. 44 (2021): 25284–90. http://dx.doi.org/10.1039/d1cp03225a.
Pełny tekst źródłaQaseem, S., M. Naeem, M. Ikram, and Nimra Niamat. "Effect of Reduced Dimensionality on the Magnetic and Transport Properties of Ca Doped Colossal Magnetoresistive Nanoparticles." JOURNAL OF NANOSCOPE (JN) 2, no. 1 (2021): 29–38. http://dx.doi.org/10.52700/jn.v2i1.26.
Pełny tekst źródłaDas, B., A. Basu, J. Das, and D. P. Bhattacharya. "Piezoelectric interaction in controlling the effective electron temperature and the non-ohmic mobility characteristics in GaN and other III–V compounds at low lattice temperature." Canadian Journal of Physics 95, no. 2 (2017): 167–72. http://dx.doi.org/10.1139/cjp-2016-0304.
Pełny tekst źródłaKabir, Muhammad Salahuddin, Eli Powell, Robert G. Manley, and Karl D. Hirschman. "Intrinsic Channel Mobility Associated with Extended State Transport in IGZO TFTs." ECS Meeting Abstracts MA2022-02, no. 35 (2022): 1260. http://dx.doi.org/10.1149/ma2022-02351260mtgabs.
Pełny tekst źródłaFeng, Tao, Liping Li, Zhe Lv, Baoyun Li, Yuelan Zhang, and Guangshe Li. "Temperature‐dependent electrical transport behavior and structural evolution in hollandite‐type titanium‐based oxide." Journal of the American Ceramic Society 102, no. 11 (2019): 6741–50. http://dx.doi.org/10.1111/jace.16520.
Pełny tekst źródłaAHMED, N., A. KHAN, and M. HUSSAIN. "NUMERICAL INVESTIGATION OF CURRENT TRANSPORT PROPERTIES OF FUTURE GENERATION DEVICE UNDER HIGHLY SENSITIVE TEMPERATURE." Digest Journal of Nanomaterials and Biostructures 15, no. 2 (2020): 399–406. http://dx.doi.org/10.15251/djnb.2020.152.399.
Pełny tekst źródłaWang, Jun Nan, Lin Wang, Huan Huan Ji, et al. "Effects of the Substrate Temperature on the Structure and Properties of Cd1-xMnxTe Films." Key Engineering Materials 633 (November 2014): 269–72. http://dx.doi.org/10.4028/www.scientific.net/kem.633.269.
Pełny tekst źródłaWagner, Michael Florian Peter, Kay-Obbe Voss, Christina Trautmann, and Maria Eugenia Toimil Molares. "Tailored Bismuth Nanowires for Size-Dependent Transport Studies." ECS Meeting Abstracts MA2022-02, no. 23 (2022): 981. http://dx.doi.org/10.1149/ma2022-0223981mtgabs.
Pełny tekst źródłaHajra, Sugato, Sushrisangita Sahoo, Twinkle Mishra, Pravat Rout, and Ram Choudhary. "Studies of dielectric and electrical transport characteristics of BaTiO3-BiFeO3-CaSnO3 ternary system." Processing and Application of Ceramics 12, no. 2 (2018): 164–70. http://dx.doi.org/10.2298/pac1802164h.
Pełny tekst źródłaZhang, Xiwei, Jiansheng Jie, Xiujuan Zhang, and Fengjun Yu. "Bismuth-catalyzed and doped p-type ZnSe nanowires and their temperature-dependent charge transport properties." Journal of Materials Chemistry C 4, no. 4 (2016): 857–62. http://dx.doi.org/10.1039/c5tc02853a.
Pełny tekst źródłaSuhak, Yuriy, Dmitry Roshchupkin, Boris Redkin, et al. "Correlation of Electrical Properties and Acoustic Loss in Single Crystalline Lithium Niobate-Tantalate Solid Solutions at Elevated Temperatures." Crystals 11, no. 4 (2021): 398. http://dx.doi.org/10.3390/cryst11040398.
Pełny tekst źródłaSchmitt, Tobias W., Benedikt Frohn, Wilhelm Wittl, et al. "Anomalous temperature dependence of multiple Andreev reflections in a topological insulator Josephson junction." Superconductor Science and Technology 36, no. 2 (2022): 024002. http://dx.doi.org/10.1088/1361-6668/aca4fe.
Pełny tekst źródłaYadav, Anjana, Kumar P. Chandra, Ajit R. Kulkarni, and Kamal Prasad. "Structural and Electric Properties of Ba-Fe-Ta-Na-Bi-Ti-O Ceramic System." Materials Science Forum 1074 (November 8, 2022): 53–59. http://dx.doi.org/10.4028/p-6902r9.
Pełny tekst źródłaMaurya, Vishwajeet, Julien Buckley, Daniel Alquier, et al. "Electrical Transport Characteristics of Vertical GaN Schottky-Barrier Diode in Reverse Bias and Its Numerical Simulation." Energies 16, no. 14 (2023): 5447. http://dx.doi.org/10.3390/en16145447.
Pełny tekst źródłaREDDY, Y. S., P. KISTAIAH, and C. VISHNUVARDHAN REDDY. "EFFECT OF Ba SUBSTITUTION ON ELECTRICAL TRANSPORT AND MAGNETORESISTANCE OF La1.2Sr1.8Mn2O7." International Journal of Modern Physics B 23, no. 03 (2009): 447–60. http://dx.doi.org/10.1142/s0217979209049632.
Pełny tekst źródła