Artykuły w czasopismach na temat „Temperature dependent electrical transport”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Temperature dependent electrical transport”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Sallam, M. M., B. A. El-Sayed i A. A. Abdel-Shafi. "The temperature dependent electrical transport in biphenyl derivatives". Current Applied Physics 6, nr 1 (styczeń 2006): 71–75. http://dx.doi.org/10.1016/j.cap.2004.12.006.
Pełny tekst źródłaWu, H. Y., W. Wang i W. J. Lu. "Temperature-dependent electrical transport mechanism in amorphous Ge2Sb2Te5films". physica status solidi (b) 253, nr 9 (7.06.2016): 1855–60. http://dx.doi.org/10.1002/pssb.201600045.
Pełny tekst źródłaVAISH, RAHUL, i KALIDHINDI B. R. VARMA. "ELECTRICAL TRANSPORT STUDIES IN 3Na2O–6.5B2O3 GLASSES". Journal of Advanced Dielectrics 01, nr 03 (lipiec 2011): 331–36. http://dx.doi.org/10.1142/s2010135x11000355.
Pełny tekst źródłaMuchharla, Baleeswaraiah, T. N. Narayanan, Kaushik Balakrishnan, Pulickel M. Ajayan i Saikat Talapatra. "Temperature dependent electrical transport of disordered reduced graphene oxide". 2D Materials 1, nr 1 (29.05.2014): 011008. http://dx.doi.org/10.1088/2053-1583/1/1/011008.
Pełny tekst źródłaSinha, S., P. L. Srivastava i R. N. Singh. "Temperature-dependent structure and electrical transport in liquid metals". Journal of Physics: Condensed Matter 1, nr 9 (6.03.1989): 1695–705. http://dx.doi.org/10.1088/0953-8984/1/9/014.
Pełny tekst źródłaLi, Zhen, Yongsen Han, Ji Liu, Daomin Min i Shengtao Li. "Investigation of temperature-dependent DC breakdown mechanism of EP/TiO2 nanocomposites". Applied Physics Letters 121, nr 5 (1.08.2022): 052901. http://dx.doi.org/10.1063/5.0097351.
Pełny tekst źródłaPark, Jae Young, Hwangyou Oh, Ju-Jin Kim i Sang Sub Kim. "The temperature-dependent electrical transport mechanism of single ZnO nanorods". Nanotechnology 17, nr 5 (7.02.2006): 1255–59. http://dx.doi.org/10.1088/0957-4484/17/5/016.
Pełny tekst źródłaSahu, A. K., S. K. Satpathy i Banarji Behera. "Dielectric and frequency-dependent transport properties of lanthanum-doped bismuth ferrite". Journal of Advanced Dielectrics 09, nr 04 (sierpień 2019): 1950031. http://dx.doi.org/10.1142/s2010135x19500310.
Pełny tekst źródłaHui, Zhenzhen, Xuzhong Zuo, Longqiang Ye, Xuchun Wang i Xuebin Zhu. "Solution Processable CrN Thin Films: Thickness-Dependent Electrical Transport Properties". Materials 13, nr 2 (16.01.2020): 417. http://dx.doi.org/10.3390/ma13020417.
Pełny tekst źródłaZhang, Tong, Liuan Li i Jin-Ping Ao. "Temperature-dependent electrical transport characteristics of a NiO/GaN heterojunction diode". Surfaces and Interfaces 5 (grudzień 2016): 15–18. http://dx.doi.org/10.1016/j.surfin.2016.08.004.
Pełny tekst źródłaThakur, Vanita, Anupinder Singh, A. M. Awasthi i Lakhwant Singh. "Temperature dependent electrical transport characteristics of BaTiO3 modified lithium borate glasses". AIP Advances 5, nr 8 (sierpień 2015): 087110. http://dx.doi.org/10.1063/1.4928339.
Pełny tekst źródłaGao, Jia, i Yueh-Lin Lynn Loo. "Temperature-Dependent Electrical Transport in Polymer-Sorted Semiconducting Carbon Nanotube Networks". Advanced Functional Materials 25, nr 1 (14.10.2014): 105–10. http://dx.doi.org/10.1002/adfm.201402407.
Pełny tekst źródłaCampos, M. "Electrical Transport Properties of Doped Poly (p-phenylene)". Polymers and Polymer Composites 11, nr 5 (lipiec 2003): 407–14. http://dx.doi.org/10.1177/096739110301100506.
Pełny tekst źródłaBaral, P. C. "Study of frequency- and temperature-dependent electrical transport in heavy fermion systems". International Journal of Modern Physics B 31, nr 12 (10.05.2017): 1750081. http://dx.doi.org/10.1142/s0217979217500813.
Pełny tekst źródłaPatel, A. B., N. K. Bhatt, B. Y. Thakore, P. R. Vyas i A. R. Jani. "The temperature-dependent electrical transport properties of liquid Sn using pseudopotential theory". Molecular Physics 112, nr 15 (14.01.2014): 2000–2004. http://dx.doi.org/10.1080/00268976.2013.877169.
Pełny tekst źródłaSingh, Deependra Kumar, Rohit Pant, Basanta Roul, Arun Malla Chowdhury, Karuna Kar Nanda i Saluru Baba Krupanidhi. "Temperature-Dependent Electrical Transport and Optoelectronic Properties of SnS2/p-Si Heterojunction". ACS Applied Electronic Materials 2, nr 7 (6.07.2020): 2155–63. http://dx.doi.org/10.1021/acsaelm.0c00362.
Pełny tekst źródłaThakur, Sonika, Parminder Kaur, Kusum Devgan i Lakhwant Singh. "Temperature Dependent Electrical Transport Characteristics of Polyaniline Films Modified with Gold nanoparticles". Materials Today: Proceedings 18 (2019): 1329–35. http://dx.doi.org/10.1016/j.matpr.2019.06.597.
Pełny tekst źródłaRoul, Basanta, Mohana K. Rajpalke, Thirumaleshwara N. Bhat, Mahesh Kumar, Neeraj Sinha, A. T. Kalghatgi i S. B. Krupanidhi. "Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes". Journal of Applied Physics 109, nr 4 (15.02.2011): 044502–044502. http://dx.doi.org/10.1063/1.3549685.
Pełny tekst źródłaBURKOV, A. T., E. BAUER, E. GRATZ i R. RESEL. "THERMOPOWER AND ELECTRICAL RESISTIVITY OF LaxY1−xAl2 ALLOYS". International Journal of Modern Physics B 07, nr 01n03 (styczeń 1993): 387–90. http://dx.doi.org/10.1142/s0217979293000822.
Pełny tekst źródłaJin, Seung Hyun, i Young Soo Lim. "Effect of Zn-Doping on the Phase Transition Behavior and Thermoelectric Transport Properties of Cu2Se". Korean Journal of Metals and Materials 58, nr 7 (5.07.2020): 466–71. http://dx.doi.org/10.3365/kjmm.2020.58.7.466.
Pełny tekst źródłaMahmood, K., i Nadeem Sabir. "Interface-Controlled Carrier Transport in Metal-Lutetium Oxide-Metal Structures Deposited by Electron-Beam Evaporation Technique". MRS Advances 2, nr 44 (2017): 2373–78. http://dx.doi.org/10.1557/adv.2017.322.
Pełny tekst źródłaMaffia, M., R. Acierno, E. Cillo i C. Storelli. "Na(+)-D-glucose cotransport by intestinal BBMVs of the Antarctic fish Trematomus bernacchii". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 271, nr 6 (1.12.1996): R1576—R1583. http://dx.doi.org/10.1152/ajpregu.1996.271.6.r1576.
Pełny tekst źródłaThakur, Seema, Vanita Thakur, Anumeet Kaur i Lakhwant Singh. "Temperature dependent electrical transport behavior of (100-x)Bi2O3-x(BaTiO3) glass system". Solid State Sciences 121 (listopad 2021): 106749. http://dx.doi.org/10.1016/j.solidstatesciences.2021.106749.
Pełny tekst źródłaGaewdang, T., i Ng Wongcharoen. "Temperature-dependent electrical transport characteristics of p-SnS/n-WO3:Sb heterojunction diode". IOP Conference Series: Materials Science and Engineering 383 (lipiec 2018): 012006. http://dx.doi.org/10.1088/1757-899x/383/1/012006.
Pełny tekst źródłaDogan, Hulya, i Sezai Elagoz. "Temperature-dependent electrical transport properties of (Au/Ni)/n-GaN Schottky barrier diodes". Physica E: Low-dimensional Systems and Nanostructures 63 (wrzesień 2014): 186–92. http://dx.doi.org/10.1016/j.physe.2014.04.019.
Pełny tekst źródłaKhan, Hasan M., M. U. Islam, Yongbing Xu, Irshad Ali, M. Asif Iqbal, M. Ishaque, Muhammad Azhar Khan, Nazia Karamat i Imran Sadiq. "Electrical transport properties and temperature-dependent magnetization behavior of TbZn-substituted Ca0.5Ba0.5Fe12O19 hexaferrites". Journal of Sol-Gel Science and Technology 78, nr 1 (24.11.2015): 151–58. http://dx.doi.org/10.1007/s10971-015-3907-x.
Pełny tekst źródłaZhang, Xiao-Wen, Dan Xie, Jian-Long Xu, Cheng Zhang, Yi-Lin Sun, Yuan-Fan Zhao, Xian Li i in. "Temperature-dependent electrical transport properties in graphene/Pb(Zr0.4Ti0.6)O3 field effect transistors". Carbon 93 (listopad 2015): 384–92. http://dx.doi.org/10.1016/j.carbon.2015.05.064.
Pełny tekst źródłaMahmood, Aamir, i Asghari Maqsood. "Temperature and frequency-dependent electrical transport studies of manganese-doped zinc ferrite nanoparticles". Materials Science and Engineering: B 296 (październik 2023): 116615. http://dx.doi.org/10.1016/j.mseb.2023.116615.
Pełny tekst źródłaSaron, K. M. A., M. R. Hashim, M. Ibrahim, M. Yahyaoui i Nageh K. Allam. "Temperature-dependent transport properties of CVD-fabricated n-GaN nanorods/p-Si heterojunction devices". RSC Advances 10, nr 55 (2020): 33526–33. http://dx.doi.org/10.1039/d0ra05973k.
Pełny tekst źródłaKUMAR, VINOD, RAJESH KUMAR i RAVI KUMAR. "STRUCTURAL AND ELECTRICAL PROPERTIES OF LaCo1-xNixO3". International Journal of Modern Physics: Conference Series 22 (styczeń 2013): 351–54. http://dx.doi.org/10.1142/s2010194513010350.
Pełny tekst źródłaLim, Jungmoon, Gahyun Ahn, Inho Jeong i Hyunwook Song. "Temperature-Dependent Charge Transport of Large-Area Molecular Junctions with PEDOT:PSS Electrodes". Science of Advanced Materials 12, nr 3 (1.03.2020): 333–36. http://dx.doi.org/10.1166/sam.2020.3645.
Pełny tekst źródłaYou, Li, Jiye Zhang, Shanshan Pan, Ying Jiang, Ke Wang, Jiong Yang, Yanzhong Pei i in. "Realization of higher thermoelectric performance by dynamic doping of copper in n-type PbTe". Energy & Environmental Science 12, nr 10 (2019): 3089–98. http://dx.doi.org/10.1039/c9ee01137d.
Pełny tekst źródłaKhamaj, Jabril A. "Influence of ion irradiation on temperature dependent electrical transport behavior of thin graphite flakes". Materials Science-Poland 34, nr 2 (1.06.2016): 399–403. http://dx.doi.org/10.1515/msp-2016-0049.
Pełny tekst źródłaChakraverty, Mayank, i V. N. Ramakrishnan. "Temperature Dependent Carrier Transport in Hydrogenated Amorphous Semiconductors for Thin Film Memristive Applications". Materials Science Forum 1048 (4.01.2022): 182–88. http://dx.doi.org/10.4028/www.scientific.net/msf.1048.182.
Pełny tekst źródłaManeesai, Keerati, Kanyapak Silakaew, Sunisar Khammahong, Chaiwat Phrompet, Chaval Sriwong, Chanchana Thanachayanont i Chesta Ruttanapun. "Temperature-dependent electrical transport, Hall effect, and Seebeck properties of bulk chemically reduced graphene oxide with bipolar charge carrier materials". AIP Advances 13, nr 3 (1.03.2023): 035333. http://dx.doi.org/10.1063/5.0142476.
Pełny tekst źródłaAbbas, Muhammad Sabbtain, Pawan Kumar Srivastava, Yasir Hassan i Changgu Lee. "Asymmetric carrier transport and weak localization in few layer graphene grown directly on a dielectric substrate". Physical Chemistry Chemical Physics 23, nr 44 (2021): 25284–90. http://dx.doi.org/10.1039/d1cp03225a.
Pełny tekst źródłaQaseem, S., M. Naeem, M. Ikram i Nimra Niamat. "Effect of Reduced Dimensionality on the Magnetic and Transport Properties of Ca Doped Colossal Magnetoresistive Nanoparticles". JOURNAL OF NANOSCOPE (JN) 2, nr 1 (30.06.2021): 29–38. http://dx.doi.org/10.52700/jn.v2i1.26.
Pełny tekst źródłaDas, B., A. Basu, J. Das i D. P. Bhattacharya. "Piezoelectric interaction in controlling the effective electron temperature and the non-ohmic mobility characteristics in GaN and other III–V compounds at low lattice temperature". Canadian Journal of Physics 95, nr 2 (luty 2017): 167–72. http://dx.doi.org/10.1139/cjp-2016-0304.
Pełny tekst źródłaKabir, Muhammad Salahuddin, Eli Powell, Robert G. Manley i Karl D. Hirschman. "Intrinsic Channel Mobility Associated with Extended State Transport in IGZO TFTs". ECS Meeting Abstracts MA2022-02, nr 35 (9.10.2022): 1260. http://dx.doi.org/10.1149/ma2022-02351260mtgabs.
Pełny tekst źródłaFeng, Tao, Liping Li, Zhe Lv, Baoyun Li, Yuelan Zhang i Guangshe Li. "Temperature‐dependent electrical transport behavior and structural evolution in hollandite‐type titanium‐based oxide". Journal of the American Ceramic Society 102, nr 11 (17.05.2019): 6741–50. http://dx.doi.org/10.1111/jace.16520.
Pełny tekst źródłaAHMED, N., A. KHAN i M. HUSSAIN. "NUMERICAL INVESTIGATION OF CURRENT TRANSPORT PROPERTIES OF FUTURE GENERATION DEVICE UNDER HIGHLY SENSITIVE TEMPERATURE". Digest Journal of Nanomaterials and Biostructures 15, nr 2 (kwiecień 2020): 399–406. http://dx.doi.org/10.15251/djnb.2020.152.399.
Pełny tekst źródłaWang, Jun Nan, Lin Wang, Huan Huan Ji, Bing Ren, Yi Ming Yang, Ji Jun Zhang, Jian Huang, Ke Tang i Lin Jun Wang. "Effects of the Substrate Temperature on the Structure and Properties of Cd1-xMnxTe Films". Key Engineering Materials 633 (listopad 2014): 269–72. http://dx.doi.org/10.4028/www.scientific.net/kem.633.269.
Pełny tekst źródłaWagner, Michael Florian Peter, Kay-Obbe Voss, Christina Trautmann i Maria Eugenia Toimil Molares. "Tailored Bismuth Nanowires for Size-Dependent Transport Studies". ECS Meeting Abstracts MA2022-02, nr 23 (9.10.2022): 981. http://dx.doi.org/10.1149/ma2022-0223981mtgabs.
Pełny tekst źródłaHajra, Sugato, Sushrisangita Sahoo, Twinkle Mishra, Pravat Rout i Ram Choudhary. "Studies of dielectric and electrical transport characteristics of BaTiO3-BiFeO3-CaSnO3 ternary system". Processing and Application of Ceramics 12, nr 2 (2018): 164–70. http://dx.doi.org/10.2298/pac1802164h.
Pełny tekst źródłaZhang, Xiwei, Jiansheng Jie, Xiujuan Zhang i Fengjun Yu. "Bismuth-catalyzed and doped p-type ZnSe nanowires and their temperature-dependent charge transport properties". Journal of Materials Chemistry C 4, nr 4 (2016): 857–62. http://dx.doi.org/10.1039/c5tc02853a.
Pełny tekst źródłaSuhak, Yuriy, Dmitry Roshchupkin, Boris Redkin, Ahsanul Kabir, Bujar Jerliu, Steffen Ganschow i Holger Fritze. "Correlation of Electrical Properties and Acoustic Loss in Single Crystalline Lithium Niobate-Tantalate Solid Solutions at Elevated Temperatures". Crystals 11, nr 4 (9.04.2021): 398. http://dx.doi.org/10.3390/cryst11040398.
Pełny tekst źródłaSchmitt, Tobias W., Benedikt Frohn, Wilhelm Wittl, Abdur R. Jalil, Michael Schleenvoigt, Erik Zimmermann, Anne Schmidt i in. "Anomalous temperature dependence of multiple Andreev reflections in a topological insulator Josephson junction". Superconductor Science and Technology 36, nr 2 (21.12.2022): 024002. http://dx.doi.org/10.1088/1361-6668/aca4fe.
Pełny tekst źródłaYadav, Anjana, Kumar P. Chandra, Ajit R. Kulkarni i Kamal Prasad. "Structural and Electric Properties of Ba-Fe-Ta-Na-Bi-Ti-O Ceramic System". Materials Science Forum 1074 (8.11.2022): 53–59. http://dx.doi.org/10.4028/p-6902r9.
Pełny tekst źródłaMaurya, Vishwajeet, Julien Buckley, Daniel Alquier, Mohamed-Reda Irekti, Helge Haas, Matthew Charles, Marie-Anne Jaud i Veronique Sousa. "Electrical Transport Characteristics of Vertical GaN Schottky-Barrier Diode in Reverse Bias and Its Numerical Simulation". Energies 16, nr 14 (18.07.2023): 5447. http://dx.doi.org/10.3390/en16145447.
Pełny tekst źródłaREDDY, Y. S., P. KISTAIAH i C. VISHNUVARDHAN REDDY. "EFFECT OF Ba SUBSTITUTION ON ELECTRICAL TRANSPORT AND MAGNETORESISTANCE OF La1.2Sr1.8Mn2O7". International Journal of Modern Physics B 23, nr 03 (30.01.2009): 447–60. http://dx.doi.org/10.1142/s0217979209049632.
Pełny tekst źródła