Gotowa bibliografia na temat „Temperature dependent electrical transport”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Temperature dependent electrical transport”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Temperature dependent electrical transport"
Sallam, M. M., B. A. El-Sayed i A. A. Abdel-Shafi. "The temperature dependent electrical transport in biphenyl derivatives". Current Applied Physics 6, nr 1 (styczeń 2006): 71–75. http://dx.doi.org/10.1016/j.cap.2004.12.006.
Pełny tekst źródłaWu, H. Y., W. Wang i W. J. Lu. "Temperature-dependent electrical transport mechanism in amorphous Ge2Sb2Te5films". physica status solidi (b) 253, nr 9 (7.06.2016): 1855–60. http://dx.doi.org/10.1002/pssb.201600045.
Pełny tekst źródłaVAISH, RAHUL, i KALIDHINDI B. R. VARMA. "ELECTRICAL TRANSPORT STUDIES IN 3Na2O–6.5B2O3 GLASSES". Journal of Advanced Dielectrics 01, nr 03 (lipiec 2011): 331–36. http://dx.doi.org/10.1142/s2010135x11000355.
Pełny tekst źródłaMuchharla, Baleeswaraiah, T. N. Narayanan, Kaushik Balakrishnan, Pulickel M. Ajayan i Saikat Talapatra. "Temperature dependent electrical transport of disordered reduced graphene oxide". 2D Materials 1, nr 1 (29.05.2014): 011008. http://dx.doi.org/10.1088/2053-1583/1/1/011008.
Pełny tekst źródłaSinha, S., P. L. Srivastava i R. N. Singh. "Temperature-dependent structure and electrical transport in liquid metals". Journal of Physics: Condensed Matter 1, nr 9 (6.03.1989): 1695–705. http://dx.doi.org/10.1088/0953-8984/1/9/014.
Pełny tekst źródłaLi, Zhen, Yongsen Han, Ji Liu, Daomin Min i Shengtao Li. "Investigation of temperature-dependent DC breakdown mechanism of EP/TiO2 nanocomposites". Applied Physics Letters 121, nr 5 (1.08.2022): 052901. http://dx.doi.org/10.1063/5.0097351.
Pełny tekst źródłaPark, Jae Young, Hwangyou Oh, Ju-Jin Kim i Sang Sub Kim. "The temperature-dependent electrical transport mechanism of single ZnO nanorods". Nanotechnology 17, nr 5 (7.02.2006): 1255–59. http://dx.doi.org/10.1088/0957-4484/17/5/016.
Pełny tekst źródłaSahu, A. K., S. K. Satpathy i Banarji Behera. "Dielectric and frequency-dependent transport properties of lanthanum-doped bismuth ferrite". Journal of Advanced Dielectrics 09, nr 04 (sierpień 2019): 1950031. http://dx.doi.org/10.1142/s2010135x19500310.
Pełny tekst źródłaHui, Zhenzhen, Xuzhong Zuo, Longqiang Ye, Xuchun Wang i Xuebin Zhu. "Solution Processable CrN Thin Films: Thickness-Dependent Electrical Transport Properties". Materials 13, nr 2 (16.01.2020): 417. http://dx.doi.org/10.3390/ma13020417.
Pełny tekst źródłaZhang, Tong, Liuan Li i Jin-Ping Ao. "Temperature-dependent electrical transport characteristics of a NiO/GaN heterojunction diode". Surfaces and Interfaces 5 (grudzień 2016): 15–18. http://dx.doi.org/10.1016/j.surfin.2016.08.004.
Pełny tekst źródłaRozprawy doktorskie na temat "Temperature dependent electrical transport"
Kaya, Savas. "Electrical transport in strained silicon quantum wells on vicinal substrates". Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313699.
Pełny tekst źródłaWebb, Alexander James. "Temperature dependence and touch sensitivity of electrical transport in novel nanocomposite printable inks". Thesis, Durham University, 2014. http://etheses.dur.ac.uk/10764/.
Pełny tekst źródłaWhitfield, Thomas Britain. "An analysis of copper transport in the insulation of high voltage transformers". Thesis, University of Surrey, 2001. http://epubs.surrey.ac.uk/843581/.
Pełny tekst źródłaFalasco, Gianmaria, Manuel V. Gnann, Daniel Rings, Dipanjan Chakraborty i Klaus Kroy. "Effective time-dependent temperature in hot Brownian motion". Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-183309.
Pełny tekst źródłaFalasco, Gianmaria, Manuel V. Gnann, Daniel Rings, Dipanjan Chakraborty i Klaus Kroy. "Effective time-dependent temperature in hot Brownian motion". Diffusion fundamentals 20 (2013) 63, S. 1-2, 2013. https://ul.qucosa.de/id/qucosa%3A13640.
Pełny tekst źródłaHai, Md. "Minimizing temperature dependent spectral shift in SOI DPSK demodulators". Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104852.
Pełny tekst źródłaLa recherche sur les composantes photoniques en silicium sur isolant (SOI) est devenue populaire en raison de leur compatibilité avec la technologie des semi-conducteur en métal complémentaire d'oxyde (CMOS). Pendant les cinq dernières années, nous avons vu plusieurs démonstrations pratiques de modulateurs optiques à grande vitesse, de commutateurs, et de filtres en SOI. Certaines de ces composantes utilisent une propriété fondamentale de lumière : l'interférence. Pourtant, les composantes en SOI à base d'interférence montrent un changement de phase spectral désastreux avec le changement de température qui s'ensuit d'une nécessité d'intégrer des circuits de contrôle actifs de température pour les stabiliser. Dans ce travail nous présentons un interféromètre Mach-Zehnder (MZI) en SOI à 50 Gb/sec pour la modulation de phase différentielle (DPSK). Le démodulateur a une stabilité thermale de 0.05 nm/0C qui est 90% meilleure que les démodulateurs non-compensés qui eux ont un profil spectral de 0.9 nm/0C. Notre méthode propose une façon complètement passive de minimiser l'effet de la température sur le changement spectral des démodulateurs DPSK. Une approche analytique complète suivi pardes simulations numériques permettent de définir les dimensions exactes du démodulateur. Nous présentons la géométrie due démodulateur. En utilisant les paramètres obtenus, nous calculons le changement spectral avec le changement de température en utilisant notre programme informatique conçu pour observer la performance du démodulateur. Le démodulateur a été fabriqué par la société de microélectrique Canadian (CMC). La largeur de la guide d'onde du démodulateur varie de 280 nm 450 nm et la hauteur est fixe à 220 nm. Pour le démodulateur non-compensé, la largeur du guide d'onde est 450 nm. Les démodulateurs tant compensés que non-compensés sont construits sur le même fragment. Les résultats expérimentaux sont présentés et nous comparons les différentes performances du démodulateur avec et sans la technique de compensation proposée.
Zhang, Zhaohui. "Spin-dependent electrical and thermal transport in magnetic tunnel junctions". APS, 2012. http://hdl.handle.net/1993/31947.
Pełny tekst źródłaFebruary 2017
Ohlendorf, Gerd, Denny Richter, Jan Sauerwald i Holger Fritze. "High-temperature electrical conductivity and electromechanical properties of stoichiometric lithium niobate". Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-192902.
Pełny tekst źródłaSirisathitkul, C. "Studies of transport phenomena at ferromagnet/semiconductor interfaces". Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325445.
Pełny tekst źródłaGreen, Paul Elijah. "View-dependent precomputed light transport using non-linear Gaussian function approximations". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/35605.
Pełny tekst źródłaIncludes bibliographical references (p. 43-46).
We propose a real-time method for rendering rigid objects with complex view-dependent effects under distant all-frequency lighting. Existing precomputed light transport approaches can render rich global illumination effects, but high-frequency view-dependent effects such as sharp highlights remain a challenge. We introduce a new representation of the light transport operator based on sums of Gaussians. The non-linear parameters of the representation allow for 1) arbitrary bandwidth because scale is encoded as a direct parameter; and 2) high-quality interpolation across view and mesh triangles because we interpolate the average direction of the incoming light, thereby preventing linear cross-fading artifacts. However, fitting the precomputed light transport data to this new representation requires solving a non-linear regression problem that is more involved than traditional linear and non-linear (truncation) approximation techniques. We present a new data fitting method based on optimization that includes energy terms aimed at enforcing good interpolation. We demonstrate that our method achieves high visual quality for a small storage cost and fast rendering time.
by Paul Elijah Green.
S.M.
Książki na temat "Temperature dependent electrical transport"
George C. Marshall Space Flight Center., red. [Computational modeling of properties]: [final report]. Marshall Space Flight Center, AL: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1995.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. [Computational modeling of properties]: [final report, 12 Mar. 1993 - 11 Jul. 1994]. [Washington, DC: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaPlastics in Automotive Engineering PIAE EUROPE. VDI Verlag, 2019. http://dx.doi.org/10.51202/9783181023433.
Pełny tekst źródłaPirota, Kleber Roberto, Angela Knobel, Manuel Hernandez-Velez, Kornelius Nielsch i Manuel Vázquez. Magnetic nanowires: Fabrication and characterization. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.22.
Pełny tekst źródłaPanigrahi, Muktikanta, i Arpan Kumar Nayak. Polyaniline based Composite for Gas Sensors. IOR PRESS, 2021. http://dx.doi.org/10.34256/ioriip212.
Pełny tekst źródłaFisher, David. Mechanical Properties of MAX Phases. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901274.
Pełny tekst źródłaSobczyk, Eugeniusz Jacek. Uciążliwość eksploatacji złóż węgla kamiennego wynikająca z warunków geologicznych i górniczych. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, 2022. http://dx.doi.org/10.33223/onermin/0222.
Pełny tekst źródłaCzęści książek na temat "Temperature dependent electrical transport"
Jahana, R., S. Kawaji, T. Okamoto, T. Fukase, T. Sakon i M. Motokawa. "Transport Properties of the Half-Filled Landau Level in GaAs/AlGaAs Heterostructures: Temperature Dependence of Electrical Conductivity and Magnetoresistance of Composite Fermions". W Materials Science in Static High Magnetic Fields, 181–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56312-6_13.
Pełny tekst źródłaSuryavanshi, Manmath, P. Karuppanan, Abhay Kumar Gautam i Sreeteja Reddy Kotha. "A Temperature Dependent Modified TEAM Model". W Lecture Notes in Electrical Engineering, 357–68. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2631-0_32.
Pełny tekst źródłaFarkas, Gábor. "Temperature-Dependent Electrical Characteristics of Semiconductor Devices". W Theory and Practice of Thermal Transient Testing of Electronic Components, 139–69. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86174-2_4.
Pełny tekst źródłaHeer, R., J. Smoliner, J. Bornemeier i H. Brückl. "Temperature Dependent Transport in Spin Valve Transistor Structures". W Nonequilibrium Carrier Dynamics in Semiconductors, 159–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-36588-4_35.
Pełny tekst źródłaNjuguna, M. K., C. Yan, J. Bell i P. Yarlagadda. "Temperature Dependent Electrical Resistivity in Epoxy—Multiwall Carbon Nanotube Nanocomposites". W Engineering Asset Management and Infrastructure Sustainability, 713–23. London: Springer London, 2012. http://dx.doi.org/10.1007/978-0-85729-493-7_55.
Pełny tekst źródłaSchweitzer, Ludwig. "Frequency Dependent Electrical Transport in the Integer Quantum Hall Effect". W Anderson Localization and Its Ramifications, 65–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45202-7_6.
Pełny tekst źródłaSteffen, Robert P. "Effect of RSR13 on Temperature-Dependent Changes in Hemoglobin Oxygen Affinity of Human Whole Blood". W Oxygen Transport to Tissue XX, 653–61. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-4863-8_77.
Pełny tekst źródłaVerma, Prateek Kishor, Akash Singh Rawat i Santosh Kumar Gupta. "Temperature-Dependent Analog, RF, and Linearity Analysis of Junctionless Quadruple Gate MOSFETs for Analog Applications". W Lecture Notes in Electrical Engineering, 355–66. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9775-3_32.
Pełny tekst źródłaFritsch, G., A. Schulte i E. Lüscher. "Low Temperature Transport Properties: The Electrical Resistivity of Some Amorphous Alloys". W Amorphous and Liquid Materials, 368–90. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3505-1_29.
Pełny tekst źródłaThong, Trinh Quang, Nguyen Anh Minh, Nguyen Trong Tinh, Trieu Viet Phuong i Dao Huy Du. "Measurement Setup for Temperature-Dependent Electrical Property of ZnO-Based Thermoelectric Thin Films". W Advances in Engineering Research and Application, 541–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64719-3_60.
Pełny tekst źródłaStreszczenia konferencji na temat "Temperature dependent electrical transport"
Thakore, B. Y., P. H. Suthar, S. G. Khambholja, P. N. Gajjar, N. K. Bhatt, A. R. Jani, S. K. Tripathi, Keya Dharamvir, Ranjan Kumar i G. S. S. Saini. "Temperature Dependent Electrical Transport Properties of Ni-Cr and Co-Cr Binary Alloys". W INTERNATIONAL CONFERENCE ON ADVANCES IN CONDENSED AND NANO MATERIALS (ICACNM-2011). AIP, 2011. http://dx.doi.org/10.1063/1.3653657.
Pełny tekst źródłaAnjum, Nafisa, Riffat Ara Islam Ritu, Washik Adnan, Md Ittehad Hasan i Md Faysal Nayan. "Numerical Analysis to Determine the Temperature-Dependent Charge Transport in CNTFET". W 2021 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE). IEEE, 2021. http://dx.doi.org/10.1109/wiecon-ece54711.2021.9829666.
Pełny tekst źródłaWagenknecht, David, Karel Carva i Ilja Turek. "Spin-dependent electrical transport at finite temperatures from the first principles". W Spintronics X, redaktorzy Henri Jaffrès, Henri-Jean Drouhin, Jean-Eric Wegrowe i Manijeh Razeghi. SPIE, 2017. http://dx.doi.org/10.1117/12.2273315.
Pełny tekst źródłaMa, Weigang, Tingting Miao i Xing Zhang. "Thermal and Electrical Transport Characteristics of Polycrystalline Gold Nanofilms". W 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22328.
Pełny tekst źródłaSamuel, B. A., C. M. Lentz i M. A. Haque. "Experimental Study of Structure-Electrical Transport Correlation in Single Disordered Carbon Nanowires". W ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11739.
Pełny tekst źródłaTang, Gong Yue, i Chun Yang. "Joule Heating Induced Temperature Gradient Focusing in a Microfluidic Channel With a Sudden Change in Cross Section". W ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52197.
Pełny tekst źródłaTang, Gongyue, Chun Yang, Cheekiong Chai i Haiqing Gong. "Electroosmotic Flow and Mass Species Transport in a Microcapillary Under Influences of Joule Heating". W ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45124.
Pełny tekst źródłaMiller, A., R. J. Manning i P. J. Bradley. "Optical Nonlinearities and Cross-Well Transport In Multiple Quantum Well Structures". W Quantum Wells for Optics and Opto-Electronics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/qwoe.1989.mc1.
Pełny tekst źródłaLi, Yong Bing, Zhong Qin Lin, Li Li i Guan Long Chen. "Numerical Analysis of Transport Phenomena in Resistance Spot Welding Process". W ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78210.
Pełny tekst źródłaShimpalee, S., S. Dutta i J. W. Van Zee. "Numerical Prediction of Local Temperature and Current Density in a PEM Fuel Cell". W ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1360.
Pełny tekst źródłaRaporty organizacyjne na temat "Temperature dependent electrical transport"
Weiss, W. Jason, Chunyu Qiao, Burkan Isgor i Jan Olek. Implementing Rapid Durability Measure for Concrete Using Resistivity and Formation Factor. Purdue University, 2020. http://dx.doi.org/10.5703/1288284317120.
Pełny tekst źródłaEfthimion, P. C., D. K. Mansfield, B. C. Stratton, E. Synakowski, A. Bhattacharjee, H. Biglari, P. H. Diamond i in. Observation of temperature dependent transport in TFTR. Office of Scientific and Technical Information (OSTI), październik 1990. http://dx.doi.org/10.2172/6780591.
Pełny tekst źródłaChan, Mun Keat. Magnetometry and electrical transport measurements of high temperature superconductors. Office of Scientific and Technical Information (OSTI), luty 2017. http://dx.doi.org/10.2172/1343729.
Pełny tekst źródłaFriedman, Shmuel, Jon Wraith i Dani Or. Geometrical Considerations and Interfacial Processes Affecting Electromagnetic Measurement of Soil Water Content by TDR and Remote Sensing Methods. United States Department of Agriculture, 2002. http://dx.doi.org/10.32747/2002.7580679.bard.
Pełny tekst źródłaNasser, Abidelfatah, Charles Gerba, Badri Fattal, Tian-Chyi Yeh i Uri Mingelgrin. Biocolloids Transport to Groundwater. United States Department of Agriculture, grudzień 1997. http://dx.doi.org/10.32747/1997.7695834.bard.
Pełny tekst źródłaBrosh, Arieh, David Robertshaw, Yoav Aharoni, Zvi Holzer, Mario Gutman i Amichai Arieli. Estimation of Energy Expenditure of Free Living and Growing Domesticated Ruminants by Heart Rate Measurement. United States Department of Agriculture, kwiecień 2002. http://dx.doi.org/10.32747/2002.7580685.bard.
Pełny tekst źródła