Gotowa bibliografia na temat „Temperature and Heat Flux characterization”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Temperature and Heat Flux characterization”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Temperature and Heat Flux characterization"
Crossley, Jacob, A. N. M. Taufiq Elahi, Mohammad Ghashami i Keunhan Park. "Characterization of commercial thermoelectric modules for precision heat flux measurement". Review of Scientific Instruments 93, nr 11 (1.11.2022): 114903. http://dx.doi.org/10.1063/5.0115915.
Pełny tekst źródłaBrosse, A., P. Naisson, H. Hamdi i J. M. Bergheau. "Temperature measurement and heat flux characterization in grinding using thermography". Journal of Materials Processing Technology 201, nr 1-3 (maj 2008): 590–95. http://dx.doi.org/10.1016/j.jmatprotec.2007.11.267.
Pełny tekst źródłaSiddapureddy, Sudheer, i SV Prabhu. "Experimental and numerical simulation studies on heat transfer to calorimeters engulfed in diesel pool fires". Journal of Fire Sciences 35, nr 2 (marzec 2017): 156–76. http://dx.doi.org/10.1177/0734904117694047.
Pełny tekst źródłaLiu, Yongfu, i Peng Tan. "Numerical investigation on heat transfer characterization of liquid lithium metal in pipe". Journal of University of Science and Technology of China 52, nr 1 (2022): 7. http://dx.doi.org/10.52396/justc-2021-0043.
Pełny tekst źródłaZhang, Congchun, Jianze Huang, Juan Li, Shenyong Yang, Guifu Ding i Wei Dong. "Design, fabrication and characterization of high temperature thin film heat flux sensors". Microelectronic Engineering 217 (wrzesień 2019): 111128. http://dx.doi.org/10.1016/j.mee.2019.111128.
Pełny tekst źródłaMartínez, Germán, Francisco Valero i Luis Vázquez. "Characterization of the Martian Surface Layer". Journal of the Atmospheric Sciences 66, nr 1 (1.01.2009): 187–98. http://dx.doi.org/10.1175/2008jas2765.1.
Pełny tekst źródłaCriscuolo, Gennaro, Wiebke Brix Markussen, Knud Erik Meyer, Björn Palm i Martin Ryhl Kærn. "Experimental Characterization of the Heat Transfer in Multi-Microchannel Heat Sinks for Two-Phase Cooling of Power Electronics". Fluids 6, nr 2 (26.01.2021): 55. http://dx.doi.org/10.3390/fluids6020055.
Pełny tekst źródłaKohári, Zs, Gy Bognár, Gy Horváth, A. Poppe, M. Rencz i V. Székely. "Cross-Verification of Thermal Characterization of a Microcooler". Journal of Electronic Packaging 129, nr 2 (15.02.2007): 167–71. http://dx.doi.org/10.1115/1.2721089.
Pełny tekst źródłaSauter, Tobias, i Stephan Peter Galos. "Effects of local advection on the spatial sensible heat flux variation on a mountain glacier". Cryosphere 10, nr 6 (24.11.2016): 2887–905. http://dx.doi.org/10.5194/tc-10-2887-2016.
Pełny tekst źródłaJi, Xuan, Nora Bailey, Daniel Fabrycky, Edwin S. Kite, Jonathan H. Jiang i Dorian S. Abbot. "Inner Habitable Zone Boundary for Eccentric Exoplanets". Astrophysical Journal Letters 943, nr 1 (1.01.2023): L1. http://dx.doi.org/10.3847/2041-8213/acaf62.
Pełny tekst źródłaRozprawy doktorskie na temat "Temperature and Heat Flux characterization"
Virk, Akashdeep Singh. "Heat Transfer Characterization in Jet Flames Impinging on Flat Plates". Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52985.
Pełny tekst źródłaMaster of Science
Genc, Gence. "Serpentinization-assisted deformation processes and characterization of hydrothermal fluxes at mid-ocean ridges". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43725.
Pełny tekst źródłaBaker, Karen Irene. "Unsteady surface heat flux and temperature measurements". Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-12042009-020124/.
Pełny tekst źródłaLartz, Douglas John. "Feedforward temperature control using a heat flux microsensor". Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06302009-040309/.
Pełny tekst źródłaPullins, Clayton Anthony. "High Temperature Heat Flux Measurement: Sensor Design, Calibration, and Applications". Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/27789.
Pełny tekst źródłaPh. D.
Raphael-Mabel, Sujay Anand. "Design and Calibration of a Novel High Temperature Heat Flux Sensor". Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/31688.
Pełny tekst źródłaMaster of Science
Hoguane, Antonio Mubango. "Hydrodynamics, temperature and salinity in mangrove swamps in Mozambique". Thesis, Bangor University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318565.
Pełny tekst źródłaVega, Thomas. "Quantification of the Fire Thermal Boundary Condition". Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/78052.
Pełny tekst źródłaMaster of Science
Tziranis, Alexander Konstantinos 1968. "Temperature, heat flux, and velocity measurements in oscillating flows with pressure variations". Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/12790.
Pełny tekst źródłaVita.
Includes bibliographical references (leaves 99-101).
by Alexander Konstantinos Tziranis.
M.S.
Kaufman, Melissa Rachel Steinberg. "Upwelling dynamics off Monterey Bay : heat flux and temperature variability, and their sensitivities". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59942.
Pełny tekst źródła"June 2010." Cataloged from PDF version of thesis.
Includes bibliographical references (p. 64-66).
Understanding the complex dynamics of coastal upwelling is essential for coastal ocean dynamics, phytoplankton blooms, and pollution transport. Atmospheric-driven coastal upwelling often occurs when strong alongshore winds and the Coriolis force combine to displace warmer surface waters offshore, leading to upward motions of deeper cooler, nutrient-dense waters to replace these surface waters. Using the models of the MIT Multidisciplinary Simulation, Estimation, and Assimilation System (MSEAS) group, we conduct a large set of simulation sensitivity studies to determine which variables are dominant controls for upwelling events in the Monterey Bay region. Our motivations include determining the dominant atmospheric fluxes and the causes of high-frequency fluctuations found in ocean thermal balances. We focus on the first upwelling event from August 1- 5, 2006 in Monterey Bay that occurred during the Monterey Bay 06 (MB06) at-sea experiment, for which MSEAS data-assimilative baseline simulations already existed. Using the thermal energy (temperature), salinity and momentum (velocity) conservation equations, full ocean fields in the region as well as both control volume (flux) balances and local differential term-by-term balances for the upwelling event events were computed. The studies of ocean fields concentrate on specific depths: surface-0m, thermocline-30m and undercurrent- 150m. Effects of differing atmospheric forcing contributions (wind stress, surface heating/cooling, and evaporation-precipitation) on these full fields and on the volume and term-by-term balances are analyzed. Tidal effects are quantified utilizing pairs of simulations in which tides are either included or not. Effects of data assimilation are also examined. We find that the wind stress forcing is the most important dynamical parameter in explaining the extent and shape of the upwelling event. This is verified using our large set of sensitivity studies and examining the heat flux balances. The assimilation of data has also an impact because this first upwelling event occurs during the initialization. Tidal forcing and, to a lesser extent, the daily atmospheric and data assimilation cycles explain the higher frequency fluctuations found in the volume averaged time rate of change of thermal energy.
by Melissa Rachel Steinberg Kaufman.
S.B.
Książki na temat "Temperature and Heat Flux characterization"
Physics Laboratory (U.S.). Optical Technology Division, red. Heat-flux sensor calibration. Gaithersburg, Md: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, Physics Laboratory, Optical Technology Division, 2004.
Znajdź pełny tekst źródłaA, Cyr M., Strange R. R i United States. National Aeronautics and Space Administration., red. Development of advanced high-temperature heat flux sensors. East Hartford, CT: United Technologies Corporation, Pratt & Whitney Group, Engineering Division, 1985.
Znajdź pełny tekst źródłaMohammad, Aslam, i Langley Research Center, red. Diamond thin film temperature and heat-flux sensors. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Miniature high temperature plug-type heat flux guages. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Miniature high temperature plug-type heat flux guages. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Znajdź pełny tekst źródłaPaul, Kolodziej, i United States. National Aeronautics and Space Administration., red. Dual active surface heat flux gage probe. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaPaul, Kolodziej, i United States. National Aeronautics and Space Administration., red. Dual active surface heat flux gage probe. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaYen, Yin-Chao. Sensible heat flux measurements near a cold surface. [Hanover, N.H.]: U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1995.
Znajdź pełny tekst źródłaBeddini, Robert A. Analysis of turbulent convective and radiative heat transfer in high temperature rocket chamber flows. New York: AIAA, 1987.
Znajdź pełny tekst źródłaCenter, Langley Research, red. High temperature electromagnetic characterization of thermal protection system tile materials. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Znajdź pełny tekst źródłaCzęści książek na temat "Temperature and Heat Flux characterization"
Kowalewski, Tomasz, Phillip Ligrani, Andreas Dreizler, Christof Schulz i Uwe Fey. "Temperature and Heat Flux". W Springer Handbook of Experimental Fluid Mechanics, 487–561. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-30299-5_7.
Pełny tekst źródłaPanerai, Francesco. "Temperature and heat flux measurements". W Experimental Aerodynamics, 143–94. Boca Raton : CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315371733-6.
Pełny tekst źródłaPanerai, Francesco. "Temperature and heat flux measurements". W Experimental Aerodynamics, 143–94. Boca Raton : CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315371733-8.
Pełny tekst źródłaSauer, Thomas J., i Xiaoyang Peng. "Soil Temperature and Heat Flux". W Agronomy Monographs, 73–93. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc., 2018. http://dx.doi.org/10.2134/agronmonogr60.2016.0024.
Pełny tekst źródłaWickström, Ulf. "Measurements of Temperature and Heat Flux". W Temperature Calculation in Fire Safety Engineering, 133–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30172-3_9.
Pełny tekst źródłaVillalobos, Francisco J., Luca Testi, Luciano Mateos i Elias Fereres. "Soil Temperature and Soil Heat Flux". W Principles of Agronomy for Sustainable Agriculture, 69–77. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46116-8_6.
Pełny tekst źródłaSu, Ching-Hua. "Vapor Transport Rate (Mass Flux) Measurements and Heat Treatments". W Vapor Crystal Growth and Characterization, 39–73. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39655-8_3.
Pełny tekst źródłaAvdonin, Sergei, i Luciano Pandolfi. "Temperature and Heat Flux Dependence/Independence for Heat Equations with Memory". W Time Delay Systems: Methods, Applications and New Trends, 87–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25221-1_7.
Pełny tekst źródłaNeumann, Richard D. "Temperature and Heat Flux Measurements — Challenges for High Temperature Aerospace Application". W New Trends in Instrumentation for Hypersonic Research, 409–36. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1828-6_38.
Pełny tekst źródłaYang, Wen, Xinhua Wang, Lifeng Zhang, Die Yang i Xuefeng Liu. "Study of Heat Flux in CSP Continuous Casting Mold". W 4th International Symposium on High-Temperature Metallurgical Processing, 227–37. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118663448.ch29.
Pełny tekst źródłaStreszczenia konferencji na temat "Temperature and Heat Flux characterization"
Lam, Cecilia S., Alexander L. Brown, Elizabeth J. Weckman i Walter Gill. "Measurement of Heat Flux From Fires". W ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56896.
Pełny tekst źródłaSoriano, Guillermo, Jorge L. Alvarado i Yen Po Lin. "Experimental Characterization of Single and Multiple Droplet Impingement on Surfaces Subject to Constant Heat Flux Conditions". W 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22515.
Pełny tekst źródłaSaavedra, J., G. Paniagua i B. H. Saracoglu. "Experimental Characterization of the Vane Heat Flux Under Pulsating Trailing-Edge Blowing". W ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-58100.
Pełny tekst źródłaRamakrishnan, Kishore Ranganath, Shoaib Ahmed, Benjamin Wahls, Prashant Singh, Maria A. Aleman, Kenneth Granlund, Srinath Ekkad, Federico Liberatore i Yin-Hsiang Ho. "Gas Turbine Combustor Liner Wall Heat Load Characterization for Different Gaseous Fuels". W ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11283.
Pełny tekst źródłaLeocadio, Hormando, CWM van der Geld i Julio Cesar Passos. "HEAT TRANSFER COEFFICIENT DURING WATER JET COOLING OF HIGH-TEMPERATURE STEEL". W 11th International Rolling Conference. Blucher, 2019. http://dx.doi.org/10.5151/9785-9785-32400.
Pełny tekst źródłaHolmberg, D., K. Steckler, C. Womeldorf i W. Grosshandler. "Facility for Calibrating Heat Flux Sensors in a Convective Environment". W ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0906.
Pełny tekst źródłaJiang, Shanjuan, Thomas J. Horn i V. K. Dhir. "Numerical Analysis of a Radiant Heat Flux Calibration System". W ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0782.
Pełny tekst źródłaOrtega, Debra J., Alejandro Amador, Ahsan R. Choudhuri i Md Mahamudur Rahman. "Experimental Characterization of Critical Heat Flux and Minimum Film Boiling Heat Flux for Additively Manufactured Cooling Channels for Liquid Nitrogen Saturated Flow Boiling". W ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95562.
Pełny tekst źródłaSaavedra, Jorge, Venkat Athmanathan, Guillermo Paniagua, Terrence Meyer, Doug Straub, James Black i Sridharan Ramesh. "Scalable Heat Transfer Characterization on Film Cooled Geometries Based on Discrete Green’s Functions". W ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-16304.
Pełny tekst źródłaLelong, Franck, Michel Gradeck, Benjamin Re´my, Aboubacar Ouattara i Denis Maillet. "Inverse Conduction Technique in Hankel Domain Using Infrared Thermography: Application to Droplet Stream Quenching a Metal Disk". W 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22275.
Pełny tekst źródłaRaporty organizacyjne na temat "Temperature and Heat Flux characterization"
Blanchat, Thomas, i Charles Hanks. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions. Office of Scientific and Technical Information (OSTI), kwiecień 2013. http://dx.doi.org/10.2172/1096950.
Pełny tekst źródłaCohen, Arthur. Calculations of Temperature, Conductive Heat Flux, and Heat Wave Velocities Due to Radiant Heating of Opaque Materials. Fort Belvoir, VA: Defense Technical Information Center, listopad 2011. http://dx.doi.org/10.21236/ada553570.
Pełny tekst źródłaSmolik, Galen Richard, Robert James Pawelko, Robert Andrew Anderl i David Andrew Petti. Oxidation and Volatilization from Tungsten Brush High Heat Flux Armor During High Temperature Steam Exposure. Office of Scientific and Technical Information (OSTI), maj 2000. http://dx.doi.org/10.2172/911474.
Pełny tekst źródłaSmolik, G. R., R. J. Pawelko, R. A. Anderl i D. A. Petti. Oxidation and Volatilization from Tungsten Brush High Heat Flux Armor During High Temperature Steam Exposure. Office of Scientific and Technical Information (OSTI), maj 2000. http://dx.doi.org/10.2172/774310.
Pełny tekst źródłaHo, Clifford, Jesus Ortega, Peter Vorobieff, Gowtham Mohan, Andrew Glen, Andres Sanchez, Darielle Dexheimer, Nathaniel Schroeder i Vanderlei Martins. Characterization of Particle and Heat Losses from a High-Temperature Particle Receiver. Office of Scientific and Technical Information (OSTI), sierpień 2021. http://dx.doi.org/10.2172/1819248.
Pełny tekst źródłaHo, Clifford, Jesus Ortega, Peter Vorobieff, Gowtham Mohan, Andrew Glen, Andres Sanchez, Darielle Dexheimer, Nathaniel Schroeder i Vanderlei Martins. Characterization of Particle and Heat Losses from a High-Temperature Particle Receiver (2nd Ed). Office of Scientific and Technical Information (OSTI), styczeń 2022. http://dx.doi.org/10.2172/1842674.
Pełny tekst źródłaJernigan, Dann A., i Thomas K. Blanchat. Temperature and heat flux datasets of a complex object in a fire plume for the validation of fire and thermal response codes. Office of Scientific and Technical Information (OSTI), wrzesień 2010. http://dx.doi.org/10.2172/1018449.
Pełny tekst źródłaFiron, Nurit, Prem Chourey, Etan Pressman, Allen Hartwell i Kenneth J. Boote. Molecular Identification and Characterization of Heat-Stress-Responsive Microgametogenesis Genes in Tomato and Sorghum - A Feasibility Study. United States Department of Agriculture, październik 2007. http://dx.doi.org/10.32747/2007.7591741.bard.
Pełny tekst źródłaKamai, Tamir, Gerard Kluitenberg i Alon Ben-Gal. Development of heat-pulse sensors for measuring fluxes of water and solutes under the root zone. United States Department of Agriculture, styczeń 2016. http://dx.doi.org/10.32747/2016.7604288.bard.
Pełny tekst źródłaMikula, R. J., I. S. Parsons, V. A. Munoz, W. W. Lam, C. Payette i K. C. McAuley. High-temperature settling of bitumen from Aostra's underground test facility. Natural Resources Canada/CMSS/Information Management, 1990. http://dx.doi.org/10.4095/331489.
Pełny tekst źródła