Artykuły w czasopismach na temat „TBL Pressure Spectrum Model”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „TBL Pressure Spectrum Model”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Biplab Ranjan Adhikary, Ananya Majumdar, Atanu Sahu i Partha Bhattacharya. "Sensitivity of TBL Wall-Pressure over the Flat Plate on Numerical Turbulence Model Parameter Variations". CFD Letters 15, nr 7 (29.05.2023): 148–74. http://dx.doi.org/10.37934/cfdl.15.7.148174.
Pełny tekst źródłaShao, Jianwang, Jinmeng Yang, Xian Wu, Cheng Wang i Guoming Deng. "Study on Radiated Noise of a Panel under Fluctuating Surface Pressure Due to an Idealized Side Mirror". Applied Sciences 10, nr 3 (3.02.2020): 994. http://dx.doi.org/10.3390/app10030994.
Pełny tekst źródłaLeehey, P. "Structural Excitation by a Turbulent Boundary Layer: An Overview". Journal of Vibration and Acoustics 110, nr 2 (1.04.1988): 220–25. http://dx.doi.org/10.1115/1.3269502.
Pełny tekst źródłaRao, V. Bhujanga, P. V. S. Ganesh Kumar i P. K. Gupta. "Viscous Effects on Turbulent Boundary-Layer Noise of Ship's Sonar Dome in a Water Tunnel". Journal of Ship Research 35, nr 04 (1.12.1991): 331–38. http://dx.doi.org/10.5957/jsr.1991.35.4.331.
Pełny tekst źródłaHuang, Chunlong, Hui Li i Nansong Li. "Flow Noise Spectrum Analysis for Vertical Line Array During Descent in Deep Water". Journal of Theoretical and Computational Acoustics 28, nr 04 (19.10.2020): 2050022. http://dx.doi.org/10.1142/s259172852050022x.
Pełny tekst źródłaShi, Beiji, Zhaoyue Xu i Shizhao Wang. "A non-equilibrium slip wall model for large-eddy simulation with an immersed boundary method". AIP Advances 12, nr 9 (1.09.2022): 095014. http://dx.doi.org/10.1063/5.0101010.
Pełny tekst źródłaGuillon, Corentin, Emmanuel Redon i Laurent Maxit. "Vibroacoustic simulations with non-homogeneous TBL excitations: Synthesis of wall pressure fields with the Continuously-varying Uncorrelated Wall Plane Waves approach". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, nr 7 (1.02.2023): 544–51. http://dx.doi.org/10.3397/in_2022_0075.
Pełny tekst źródłaShepherd, Micah. "Excitation of structures by partially correlated pressures: A review of diffuse acoustic field and turbulent boundary layer models". Journal of the Acoustical Society of America 153, nr 3_supplement (1.03.2023): A75. http://dx.doi.org/10.1121/10.0018211.
Pełny tekst źródłaOWEIS, GHANEM F., ERIC S. WINKEL, JAMES M. CUTBRITH, STEVEN L. CECCIO, MARC PERLIN i DAVID R. DOWLING. "The mean velocity profile of a smooth-flat-plate turbulent boundary layer at high Reynolds number". Journal of Fluid Mechanics 665 (6.12.2010): 357–81. http://dx.doi.org/10.1017/s0022112010003952.
Pełny tekst źródłaGoody, Michael. "An empirical model for the frequency spectrum of surface pressure fluctuations". Journal of the Acoustical Society of America 111, nr 5 (2002): 2379. http://dx.doi.org/10.1121/1.4778064.
Pełny tekst źródłaLysak, Peter D. "Modeling the Wall Pressure Spectrum in Turbulent Pipe Flows". Journal of Fluids Engineering 128, nr 2 (19.08.2005): 216–22. http://dx.doi.org/10.1115/1.2170125.
Pełny tekst źródłaLam, N. T. K., Priyan Mendis i Tuan Ngo. "Response Spectrum Solutions for Blast Loading". Electronic Journal of Structural Engineering 4 (1.01.2004): 28–44. http://dx.doi.org/10.56748/ejse.439.
Pełny tekst źródłaBrown, Michael G. "A directional spectrum evolution model for ship noise". Journal of the Acoustical Society of America 153, nr 6 (1.06.2023): 3469. http://dx.doi.org/10.1121/10.0019851.
Pełny tekst źródłaBeqiri, Erta, Marek Czosnyka, Afroditi D. Lalou, Frederick A. Zeiler, Marta Fedriga, Luzius A. Steiner, Arturo Chieregato i Peter Smielewski. "Influence of mild-moderate hypocapnia on intracranial pressure slow waves activity in TBI". Acta Neurochirurgica 162, nr 2 (16.12.2019): 345–56. http://dx.doi.org/10.1007/s00701-019-04118-6.
Pełny tekst źródłaXu, Qian, i Zhong-Qi Wang. "Model for Calculating Seismic Wave Spectrum Excited by Explosive Source". Shock and Vibration 2021 (3.06.2021): 1–15. http://dx.doi.org/10.1155/2021/6544453.
Pełny tekst źródłaKato, Hiroharu, Akihisa Konno, Masatsugu Maeda i Hajime Yamaguchi. "Possibility of Quantitative Prediction of Cavitation Erosion Without Model Test". Journal of Fluids Engineering 118, nr 3 (1.09.1996): 582–88. http://dx.doi.org/10.1115/1.2817798.
Pełny tekst źródłaRocha, Joana, Afzal Suleman i Fernando Lau. "Prediction of Turbulent Boundary Layer Induced Noise in the Cabin of a BWB Aircraft". Shock and Vibration 19, nr 4 (2012): 693–705. http://dx.doi.org/10.1155/2012/153204.
Pełny tekst źródłaKamruzzaman, M., D. Bekiropoulos, Th Lutz, W. Würz i E. Krämer. "A Semi-Empirical Surface Pressure Spectrum Model for Airfoil Trailing-Edge Noise Prediction". International Journal of Aeroacoustics 14, nr 5-6 (październik 2015): 833–82. http://dx.doi.org/10.1260/1475-472x.14.5-6.833.
Pełny tekst źródłaLiodakis, I. "Toy model for the acceleration of blazar jets". Astronomy & Astrophysics 616 (sierpień 2018): A93. http://dx.doi.org/10.1051/0004-6361/201832766.
Pełny tekst źródłaLee, Yu-Tai, William K. Blake i Theodore M. Farabee. "Modeling of Wall Pressure Fluctuations Based on Time Mean Flow Field". Journal of Fluids Engineering 127, nr 2 (20.09.2004): 233–40. http://dx.doi.org/10.1115/1.1881698.
Pełny tekst źródłaLuesutthiviboon, Salil, Daniele Ragni, Francesco Avallone i Mirjam Snellen. "An alternative permeable topology design space for trailing-edge noise attenuation". International Journal of Aeroacoustics 20, nr 3-4 (28.03.2021): 221–53. http://dx.doi.org/10.1177/1475472x211003295.
Pełny tekst źródłaSlama, Myriam, Cédric Leblond i Pierre Sagaut. "A Kriging-based elliptic extended anisotropic model for the turbulent boundary layer wall pressure spectrum". Journal of Fluid Mechanics 840 (6.02.2018): 25–55. http://dx.doi.org/10.1017/jfm.2017.810.
Pełny tekst źródłaSmol’yakov, A. V. "A new model for the cross spectrum and wavenumber-frequency spectrum of turbulent pressure fluctuations in a boundary layer". Acoustical Physics 52, nr 3 (maj 2006): 331–37. http://dx.doi.org/10.1134/s1063771006030146.
Pełny tekst źródłaMead, A. J., T. Tröster, C. Heymans, L. Van Waerbeke i I. G. McCarthy. "A hydrodynamical halo model for weak-lensing cross correlations". Astronomy & Astrophysics 641 (wrzesień 2020): A130. http://dx.doi.org/10.1051/0004-6361/202038308.
Pełny tekst źródłaDadhich, Yogesh, Nazek Alessa, Reema Jain, Abdul Razak Kaladgi, Karuppusamy Loganathan i V. Radhika Devi. "Thermal Onsets of Viscous Dissipation for Radiative Mixed Convective Flow of Jeffery Nanofluid across a Wedge". Symmetry 15, nr 2 (1.02.2023): 385. http://dx.doi.org/10.3390/sym15020385.
Pełny tekst źródłaBatrakov, Andrei. "Experimental and numerical simulation of the wall-pressure fluctuation on the isolated helicopter fuselage". EPJ Web of Conferences 269 (2022): 01002. http://dx.doi.org/10.1051/epjconf/202226901002.
Pełny tekst źródłaOu, Li Jian, Feng Hong Wang i Wei Zhang. "Marine Ducted Propeller Blade Fracture Fault Diagnosis Technology Based on CFD". Applied Mechanics and Materials 488-489 (styczeń 2014): 1219–23. http://dx.doi.org/10.4028/www.scientific.net/amm.488-489.1219.
Pełny tekst źródłaRao, V. Bhujanga. "Selection of a Suitable Wall Pressure Spectrum Model for Estimating Flow-Induced Noise in Sonar Applications". Shock and Vibration 2, nr 5 (1995): 403–12. http://dx.doi.org/10.1155/1995/720535.
Pełny tekst źródłaFu, Liufang, Peng Li, Xinhua Zhang, Shuqing Ma i Chengzhi Gao. "Vector Ocean Ambient Noise Spectrum Simulation Based on Parabolic Equation Model in Shallow Water". Journal of Computational Acoustics 25, nr 02 (31.03.2017): 1750034. http://dx.doi.org/10.1142/s0218396x17500345.
Pełny tekst źródłaTamisier, R., J. L. Pepin, B. Wuyam, R. Smith, J. Argod i P. Levy. "Characterization of pharyngeal resistance during sleep in a spectrum of sleep-disordered breathing". Journal of Applied Physiology 89, nr 1 (1.07.2000): 120–30. http://dx.doi.org/10.1152/jappl.2000.89.1.120.
Pełny tekst źródłaGrasso, G., P. Jaiswal, H. Wu, S. Moreau i M. Roger. "Analytical models of the wall-pressure spectrum under a turbulent boundary layer with adverse pressure gradient". Journal of Fluid Mechanics 877 (2.09.2019): 1007–62. http://dx.doi.org/10.1017/jfm.2019.616.
Pełny tekst źródłaStosiak, Michał, Mykola Karpenko, Adam Deptuła, Kamil Urbanowicz, Paulius Skačkauskas, Anna Małgorzata Deptuła, Algimantas Danilevičius, Šarūnas Šukevičius i Mariusz Łapka. "Research of Vibration Effects on a Hydraulic Valve in the Pressure Pulsation Spectrum Analysis". Journal of Marine Science and Engineering 11, nr 2 (1.02.2023): 301. http://dx.doi.org/10.3390/jmse11020301.
Pełny tekst źródłaBurkhoff, D., J. Alexander i J. Schipke. "Assessment of Windkessel as a model of aortic input impedance". American Journal of Physiology-Heart and Circulatory Physiology 255, nr 4 (1.10.1988): H742—H753. http://dx.doi.org/10.1152/ajpheart.1988.255.4.h742.
Pełny tekst źródłaGrenner, J. "Significance of a notch in the otoacoustic emission stimulus spectrum". Journal of Laryngology & Otology 126, nr 9 (17.07.2012): 897–901. http://dx.doi.org/10.1017/s0022215112001533.
Pełny tekst źródłaJosserand, M. A., i G. C. Lauchle. "Modeling the Wavevector-Frequency Spectrum of Boundary-Layer Wall Pressure During Transition on a Flat Plate". Journal of Vibration and Acoustics 112, nr 4 (1.10.1990): 523–34. http://dx.doi.org/10.1115/1.2930138.
Pełny tekst źródłaLayton, Anita T., Leon C. Moore i Harold E. Layton. "Multistability in tubuloglomerular feedback and spectral complexity in spontaneously hypertensive rats". American Journal of Physiology-Renal Physiology 291, nr 1 (lipiec 2006): F79—F97. http://dx.doi.org/10.1152/ajprenal.00048.2005.
Pełny tekst źródłaWang, Yue, Wanlong Ren, Gang Liu, Jin Liu, Juan Xu i Zongrui Hao. "The Pressure Pulsation and Spectrum Analysis of Ducted Propeller Based on SST k-ω model". Journal of Physics: Conference Series 1300 (sierpień 2019): 012080. http://dx.doi.org/10.1088/1742-6596/1300/1/012080.
Pełny tekst źródłaYan, Fuyong, De-Hua Han i Xue-Lian Chen. "Pore Aspect Ratio Spectrum Inversion from Ultrasonic Measurements and Its Application". Journal of Computational Acoustics 23, nr 04 (grudzień 2015): 1540009. http://dx.doi.org/10.1142/s0218396x15400093.
Pełny tekst źródłaThomson, Nicholas, i Joana Rocha. "Comparison of Semi-Empirical Single Point Wall Pressure Spectrum Models with Experimental Data". Fluids 6, nr 8 (31.07.2021): 270. http://dx.doi.org/10.3390/fluids6080270.
Pełny tekst źródłaXie, Yingchun, Yucheng Xiao, Xuyan Liu, Guijie Liu, Weixiong Jiang i Jin Qin. "Time-Frequency Distribution Map-Based Convolutional Neural Network (CNN) Model for Underwater Pipeline Leakage Detection Using Acoustic Signals". Sensors 20, nr 18 (4.09.2020): 5040. http://dx.doi.org/10.3390/s20185040.
Pełny tekst źródłaLee, Shouyan, i Geert W. Schmid-Scho¨nbein. "Biomechanical Model for the Myogenic Response in the Microcirculation: Part I—Formulation and Initial Testing". Journal of Biomechanical Engineering 118, nr 2 (1.05.1996): 145–51. http://dx.doi.org/10.1115/1.2795952.
Pełny tekst źródłaZuckerman, B. D., H. F. Weisman i F. C. Yin. "Arterial hemodynamics in a rabbit model of atherosclerosis". American Journal of Physiology-Heart and Circulatory Physiology 257, nr 3 (1.09.1989): H891—H897. http://dx.doi.org/10.1152/ajpheart.1989.257.3.h891.
Pełny tekst źródłaZhang, Jian Guo, i Hui Min Zhuang. "Wind Tunnel Test of Symmetrical Twin-Tower Tall Building Model". Advanced Materials Research 919-921 (kwiecień 2014): 518–22. http://dx.doi.org/10.4028/www.scientific.net/amr.919-921.518.
Pełny tekst źródłaEthier, L., N. E. Massa, A. Béliveau i C. Carlone. "The Raman spectrum of Cs2SeO4 crystals". Canadian Journal of Physics 67, nr 7 (1.07.1989): 657–63. http://dx.doi.org/10.1139/p89-120.
Pełny tekst źródłaGalindo, José, Francisco José Arnau, Luis Miguel García-Cuevas i Pablo Soler. "Experimental validation of a quasi-two-dimensional radial turbine model". International Journal of Engine Research 21, nr 6 (20.07.2018): 915–26. http://dx.doi.org/10.1177/1468087418788502.
Pełny tekst źródłaHao, Jin Feng, Jian Hua Gao, Yang Liu i Gui De Liu. "Spectrum Analysis of Isolated Vertical Seismic Response Storage Tanks". Applied Mechanics and Materials 166-169 (maj 2012): 2270–74. http://dx.doi.org/10.4028/www.scientific.net/amm.166-169.2270.
Pełny tekst źródłaLI, CHENXI, JINGYING JIANG i KEXIN XU. "THE VARIATIONS OF WATER IN HUMAN TISSUE UNDER CERTAIN COMPRESSION: STUDIED WITH DIFFUSE REFLECTANCE SPECTROSCOPY". Journal of Innovative Optical Health Sciences 06, nr 01 (styczeń 2013): 1350005. http://dx.doi.org/10.1142/s1793545813500053.
Pełny tekst źródłaChase, D. M. "The character of the turbulent wall pressure spectrum at subconvective wavenumbers and a suggested comprehensive model". Journal of Sound and Vibration 112, nr 1 (styczeń 1987): 125–47. http://dx.doi.org/10.1016/s0022-460x(87)80098-6.
Pełny tekst źródłaGisby, J. A., i S. H. Walmsley. "A model of the effects of pressure on the near ultraviolet absorption spectrum of crystalline naphthalene". Chemical Physics Letters 135, nr 3 (kwiecień 1987): 275–78. http://dx.doi.org/10.1016/0009-2614(87)85155-2.
Pełny tekst źródłaSegovia-Chaves, Francis, Herbert Vinck-Posada i Edgar A. Gómez. "Transmittance in a dispersive quasiperiodic photonic crystal". International Journal of Modern Physics B 35, nr 04 (28.01.2021): 2150061. http://dx.doi.org/10.1142/s0217979221500612.
Pełny tekst źródła