Gotowa bibliografia na temat „Targeting Mice”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Targeting Mice”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Targeting Mice"
Gogos, Joseph A., i Maria Karayiorgou. "?Targeting? schizophrenia in mice". American Journal of Medical Genetics 105, nr 1 (2001): 50–52. http://dx.doi.org/10.1002/1096-8628(20010108)105:1<50::aid-ajmg1058>3.0.co;2-5.
Pełny tekst źródłaKuhn, R., F. Schwenk, M. Aguet i K. Rajewsky. "Inducible gene targeting in mice". Science 269, nr 5229 (8.09.1995): 1427–29. http://dx.doi.org/10.1126/science.7660125.
Pełny tekst źródłaGao, Jiangang, Xudong Wu i Jian Zuo. "Targeting hearing genes in mice". Molecular Brain Research 132, nr 2 (grudzień 2004): 192–207. http://dx.doi.org/10.1016/j.molbrainres.2004.06.035.
Pełny tekst źródłaBléry, Mathieu, Manel Mrabet-Kraiem, Ariane Morel, Florence Lhospice, Delphine Bregeon, Cécile Bonnafous, Laurent Gauthier i in. "Targeting MICA/B with cytotoxic therapeutic antibodies leads to tumor control". Open Research Europe 1 (27.10.2021): 107. http://dx.doi.org/10.12688/openreseurope.13314.2.
Pełny tekst źródłaBléry, Mathieu, Manel Mrabet-Kraiem, Ariane Morel, Florence Lhospice, Delphine Bregeon, Cécile Bonnafous, Laurent Gauthier i in. "Targeting MICA/B with cytotoxic therapeutic antibodies leads to tumor control". Open Research Europe 1 (13.09.2021): 107. http://dx.doi.org/10.12688/openreseurope.13314.1.
Pełny tekst źródłaChen, Szu-Tah, Shin-Huei Fu, Samuel Hsu, Yu-Yao Huang i Brend Ray-Sea Hsu. "Synergistic Effect of Hyperglycemia and Suppression on Adult Mouse Islet Beta Cell Replication". International Journal of Endocrinology 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/417390.
Pełny tekst źródłaNakamura, K., C. Fan, G. Liu, S. Gupta, J. He, S. Dou, A. Kubo, M. Rusckowski i D. J. Hnatowich. "Evidence of Antisense Tumor Targeting in Mice". Bioconjugate Chemistry 15, nr 6 (listopad 2004): 1475–80. http://dx.doi.org/10.1021/bc0499073.
Pełny tekst źródłaWu, Lawren C., i Heleen Scheerens. "Targeting IgE production in mice and humans". Current Opinion in Immunology 31 (grudzień 2014): 8–15. http://dx.doi.org/10.1016/j.coi.2014.08.001.
Pełny tekst źródłaCollison, Joanna. "Targeting Bcl-2 prevents nephritis in mice". Nature Reviews Rheumatology 12, nr 7 (26.05.2016): 376. http://dx.doi.org/10.1038/nrrheum.2016.90.
Pełny tekst źródłaM. Gordon, Erlinda, Seiya Liu, Sant P. Chawla i Frederick L. Hall. "Polypeptidic Taxol-Tropins: Targeting paclitaxel to the tumor microenvironment". Cancer Research and Cellular Therapeutics 5, nr 3 (26.07.2021): 01–11. http://dx.doi.org/10.31579/2640-1053/089.
Pełny tekst źródłaRozprawy doktorskie na temat "Targeting Mice"
Shelton, Laura Marie. "Targeting Energy Metabolism in Brain Cancer". Thesis, Boston College, 2010. http://hdl.handle.net/2345/1183.
Pełny tekst źródłaIt has long been posited that all cancer cells are dependent on glucose for energy, termed the "Warburg Effect". As a result of an irreversible injury to the mitochondria, cancer cells are less efficient in aerobic respiration. Therefore, calorie restriction was thought to be a natural way to attenuate tumor growth. Calorie restriction lowers blood glucose, while increasing the circulation of ketone bodies. Ketone bodies are metabolized via oxidative phosphorylation in the mitochondria. Only cells that are metabolically capable of aerobic respiration will thus be able to acquire energy from ketone bodies. To date, calorie restriction has been shown to greatly reduce tumor growth and angiogenesis in the murine CT2A, EPEN, and human U87 brain tumor models. Using the novel VM-M3 model for invasive brain cancer and systemic metastatic cancer, I found that though calorie restriction had some efficacy in reducing brain tumor invasion and primary tumor size, metastatic spread was unaffected. Using a bioluminescent-based ATP assay, I determined the viability of metastatic mouse VM-M3 tumor cells grown in vitro in serum free medium in the presence of glucose alone (25 mM), glutamine alone (4 mM), or in glucose + glutamine. The VM-M3 cells could not survive on glucose alone, but could survive in glutamine alone indicating an absolute requirement for glutamine in these metastatic tumor cells. Glutamine could also maintain viability in the absence of glucose and in the presence of the F1 ATPase inhibitor oligomycin. Glutamine could not maintain viability in the presence of the Krebs (TCA) cycle enzyme inhibitor, 3-nitropropionic acid. The data indicate that glutamine can provide ATP for viability in the metastatic VM-M3 cells through Krebs cycle substrate level phosphorylation in the absence of energy from either glycolysis or oxidative phosphorylation. I therefore developed a metabolic therapy that targeted both glucose and glutamine metabolism using calorie restriction and 6-diazo-5-oxo-L-norleucine (DON), a glutamine analog. Primary tumor growth was about 20-fold less in DON treated mice than in untreated control mice. I also found that DON treatment administered alone or in combination with CR inhibited metastasis to liver, lung, and kidney as detected by bioluminescence imaging and histology. Although DON treatment alone did not reduce the incidence of tumor metastasis to spleen compared to the controls, DON administered together with CR significantly reduced the incidence of metastasis to the spleen, indicating a diet/drug synergy. In addition, the phagocytic capabilities of the VM-M3 tumor cells were enhanced during times of energy stress. This allowed for the digestion of engulfed material to be used in energy production. My data provide proof of concept that metabolic therapies targeting both glucose and glutamine metabolism can manage systemic metastatic cancer. Additionally, due to the phagocytic properties of the VM-M3 cell line also seen in a number of human metastatic cancers, I suggest that a unique therapy targeting metabolism and phagocytosis will be required for effective management of metastatic cancer
Thesis (PhD) — Boston College, 2010
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Biology
Lu, Linyu. "Investigations into the feasibility of single-stranded oligonucleotide-mediated targeted gene repair in mammalian cells". View the Table of Contents & Abstract, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37552636.
Pełny tekst źródłaTsang, Wai-hung, i 曾偉雄. "Studying the roles of mouse Sox10 by conditional gene targeting". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B3124483X.
Pełny tekst źródłaLu, Linyu, i 陸林宇. "Investigations into the feasibility of single-strandedoligonucleotide-mediated targeted gene repair in mammalian cells". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B38722793.
Pełny tekst źródłaWong, Kung-yen Corinne, i 黃共欣. "Analysis of abnormal phenotypes of Hoxb3 mouse mutants generated by gene targeting". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B29158904.
Pełny tekst źródłaBenn, Caroline Louise. "Targeting mutant huntingtin to the nucleus accelerates phenotype onset in transgenic mice". Thesis, King's College London (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401268.
Pełny tekst źródłaThompson, Simon. "The study of HPRT gene expression using gene targeting and transgenic mice". Thesis, University of Edinburgh, 1989. http://hdl.handle.net/1842/13115.
Pełny tekst źródłaLedin, Johan. "Heparan Sulfate Biosynthesis – Clues from Knockout Mice". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3992.
Pełny tekst źródłaYang, Li. "Studying the Function of Rho Family GTPase Cdc42 by Gene Targeting in Mice". University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1172690084.
Pełny tekst źródłaCurry, Zachary. "Targeting monoacylglycerol lipase for the reversal and prevention of paclitaxel-induced allodynia in mice". VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5274.
Pełny tekst źródłaKsiążki na temat "Targeting Mice"
L, Joyner Alexandra, red. Gene targeting: A practical approach. Oxford: IRL Press at Oxford University Press, 1993.
Znajdź pełny tekst źródła1955-, Wurst Wolfgang, red. Gene knockout protocols. Wyd. 2. New York, NY: Humana Press, 2009.
Znajdź pełny tekst źródłaKühn, Ralf. Gene knockout protocols. Wyd. 2. New York, NY: Humana Press, 2009.
Znajdź pełny tekst źródłaDurum, Scott K., i Kathrin Muegge. Cytokine Knockouts. Humana Press, 2013.
Znajdź pełny tekst źródłaTymms, Martin J., i Ismail Kola. Gene Knockout Protocols. Humana Press, 2010.
Znajdź pełny tekst źródła(Editor), Martin J. Tymms, i Ismail Kola (Editor), red. Gene Knockout Protocols (Methods in Molecular Biology). Humana Press, 2001.
Znajdź pełny tekst źródłaGene Knockout Protocols. Humana Press, 2004.
Znajdź pełny tekst źródłaFantuzzi, Giamila. Cytokine Knockouts. Humana Press, 2010.
Znajdź pełny tekst źródłaWurst, Wolfgang, i Ralf Kühn. Gene Knockout Protocols. Humana Press, 2014.
Znajdź pełny tekst źródłaKhachatryan, Armen. Targeting of calcitonin gene-related peptide expression to the pancreatic beta cells prevents insulin-dependent diabetes mellitus in non-obese diabetic mice. 1996.
Znajdź pełny tekst źródłaCzęści książek na temat "Targeting Mice"
Shi, Jiayuan, Li Hua, Danielle Harmer, Peishan Li i Guangwen Ren. "Cre Driver Mice Targeting Macrophages". W Macrophages, 263–75. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7837-3_24.
Pełny tekst źródłaBouabe, Hicham, i Klaus Okkenhaug. "Gene Targeting in Mice: A Review". W Methods in Molecular Biology, 315–36. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-601-6_23.
Pełny tekst źródłaGabizon, A., S. K. Huang i D. Papahadjopoulos. "Sterically Stabilized Liposomes as Drug Carriers: Pharmacokinetics, Tissue Distribution and Therapeutic Effects in Tumour-Bearing Mice". W Targeting of Drugs 3, 51–58. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-2938-5_6.
Pełny tekst źródłaBrandau, O., i R. Fässler. "Analysis of Integrin Function by Gene Targeting in Mice". W Transgenic Models in Pharmacology, 193–225. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18934-0_7.
Pełny tekst źródłaTurunen, Tiia A., Seppo Ylä-Herttuala i Mikko P. Turunen. "Enhancing Angiogenesis in Mice by VEGF-Targeting Small Activating RNAs". W RNA Activation, 195–205. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4310-9_14.
Pełny tekst źródłaWei, Dongping, i Lijun Jia. "Oral Delivery of Tumor-Targeting Salmonella to Treat Cancer in Mice". W Methods in Molecular Biology, 25–33. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3515-4_3.
Pełny tekst źródłaPassananti, Claudio, Nicoletta Corbi, Annalisa Onori, Maria Grazia Di Certo i Elisabetta Mattei. "Transgenic Mice Expressing an Artificial Zinc Finger Regulator Targeting an Endogenous Gene". W Methods in Molecular Biology, 183–206. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-753-2_11.
Pełny tekst źródłaBremer, Jeroen, i Peter C. van den Akker. "In Vivo Models for the Evaluation of Antisense Oligonucleotides in Skin". W Methods in Molecular Biology, 315–20. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2010-6_21.
Pełny tekst źródłaMak, Tak W., Amin Rahemtulla, Marco Schilham, Dow Rhoon Koh i Wai Ping Fung-Leung. "Generation of Mutant Mice Lacking Surface Expression of CD4 or CD8 Gene Targeting". W Advances in Experimental Medicine and Biology, 73–77. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3396-2_10.
Pełny tekst źródłaSherman, L. A., M. Theobald i J. Lustgarten. "The Use of HLA Transgenic Mice in Identifying and Targeting Human Tumor Cell Antigens". W Symposium in Immunology VI, 41–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60562-8_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Targeting Mice"
Schuoler, Claudio, Thomas Haider, Caroline Leuenberger, Johannes Vogel, Louise Ostergaard, Malcolm Kohler, Max Gassmann, Lars Huber i Matthias Brock. "Targeting aquaporin 1 reverses hypoxia-induced pulmonary hypertension in mice". W ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.pa5104.
Pełny tekst źródłaFirestone, Ross S., Mu Feng i Vern L. Schramm. "Abstract 18: Doubled lifespan in APCMin/+mice by targeting MTAP". W Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-18.
Pełny tekst źródłaFirestone, Ross S., Mu Feng i Vern L. Schramm. "Abstract 18: Doubled lifespan in APCMin/+mice by targeting MTAP". W Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-18.
Pełny tekst źródłaSchloss, Kaelyn H., Xiaodan Wang, Jonah A. Padawer-Curry, Annie R. Bice i Adam Q. Bauer. "Spatiotemporal Properties of Stimulus-evoked Responses in Mice Following Single Whisker Stimulation". W Optics and the Brain. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/brain.2024.bm5c.5.
Pełny tekst źródłaRui-Zhi Zhao, You-Jun Chen i Jian-xiong Cai. "Liver targeting effect of vinegar-baked Radix Bupleuri on oxymatrine in mice". W 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW). IEEE, 2011. http://dx.doi.org/10.1109/bibmw.2011.6112462.
Pełny tekst źródłaGurova, Katerina V., Henry Garcia, Mairead Commane i Alfiya Safina. "Abstract 3843: Targeting FACT complex suppresses mammary tumorigenesis in Her2/neu transgenic mice". W Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3843.
Pełny tekst źródłaWali, S., D. Goldblatt, J. Pantaleón García, M. J. Tuvim, B. F. Dickey i S. E. Evans. "Targeting CD8+ T Cell Immunopathology to Improve Survival of Viral Pneumonia in Mice". W American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a3896.
Pełny tekst źródłaKovar, Joy L., Evan Curtis, Shadi F. Othman, Melanie A. Simpson i D. Michael Olive. "Abstract C4: Specific targeting of spontaneous medulloblastoma tumors in mice by IRDye 800CW chlorotoxin." W Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 12-16, 2011; San Francisco, CA. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1535-7163.targ-11-c4.
Pełny tekst źródłaYin, Yi, Xianming Huang, Dan Ye i Philip Thorpe. "Abstract 1244: Phosphatidylserine-targeting antibody reactivates tumor immunity and destroys tumor vasculature in mice." W Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-1244.
Pełny tekst źródłaBurlion, Aude, Aurélien Corneau i Gilles Marodon. "Abstract A053: Targeting ICOS improves immune-mediated control of tumor growth in humanized mice". W Abstracts: Second CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 25-28, 2016; New York, NY. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/2326-6066.imm2016-a053.
Pełny tekst źródłaRaporty organizacyjne na temat "Targeting Mice"
McAllister, Kimberely A., i Roger Wiseman. Mammary-Specific Targeting of the BRCA2 Breast Cancer Susceptibility Gene in Mice. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1999. http://dx.doi.org/10.21236/ada390479.
Pełny tekst źródłaMcAllister, Kimberly A., i Roger Wiseman. Mammary-Specific Targeting of the BRCA2 Breast Cancer Susceptibility Gene in Mice. Fort Belvoir, VA: Defense Technical Information Center, listopad 2000. http://dx.doi.org/10.21236/ada393317.
Pełny tekst źródłaRoy, Madhumita. Black Tea Extract prevents 4-nitroquinoline 1-oxide induced oral tumorigenesis in mice by targeting Protein Tyrosine Kinases and associated biological response. Science Repository OÜ, marzec 2019. http://dx.doi.org/10.31487/j.cor.2019.01.102.
Pełny tekst źródłaNeedham, Glenn R., Uri Gerson, Gloria DeGrandi-Hoffman, D. Samatero, J. Yoder i William Bruce. Integrated Management of Tracheal Mite, Acarapis woodi, and of Varroa Mite, Varroa jacobsoni, Major Pests of Honey Bees. United States Department of Agriculture, marzec 2000. http://dx.doi.org/10.32747/2000.7573068.bard.
Pełny tekst źródła