Gotowa bibliografia na temat „Tamil speech recognition”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Tamil speech recognition”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Tamil speech recognition"
Rojathai, S., i M. Venkatesulu. "Investigation of ANFIS and FFBNN Recognition Methods Performance in Tamil Speech Word Recognition". International Journal of Software Innovation 2, nr 2 (kwiecień 2014): 43–53. http://dx.doi.org/10.4018/ijsi.2014040103.
Pełny tekst źródłaRojathai, S., i M. Venkatesulu. "Tamil Speech Word Recognition System with Aid of ANFIS and Dynamic Time Warping (DTW)". Journal of Computational and Theoretical Nanoscience 13, nr 10 (1.10.2016): 6719–27. http://dx.doi.org/10.1166/jctn.2016.5619.
Pełny tekst źródłaNelapati, Ratna Kanth, i Saraswathi Selvarajan. "Affect Recognition in Human Emotional Speech using Probabilistic Support Vector Machines". International Journal on Recent and Innovation Trends in Computing and Communication 10, nr 2s (31.12.2022): 166–73. http://dx.doi.org/10.17762/ijritcc.v10i2s.5924.
Pełny tekst źródłaHashim Changrampadi, Mohamed, A. Shahina, M. Badri Narayanan i A. Nayeemulla Khan. "End-to-End Speech Recognition of Tamil Language". Intelligent Automation & Soft Computing 32, nr 2 (2022): 1309–23. http://dx.doi.org/10.32604/iasc.2022.022021.
Pełny tekst źródłaThangarajan, R., A. M. Natarajan i M. Selvam. "Syllable modeling in continuous speech recognition for Tamil language". International Journal of Speech Technology 12, nr 1 (marzec 2009): 47–57. http://dx.doi.org/10.1007/s10772-009-9058-0.
Pełny tekst źródłaSuriya, Dr S., S. Nivetha, P. Pavithran, Ajay Venkat S., Sashwath K. G. i Elakkiya G. "Effective Tamil Character Recognition Using Supervised Machine Learning Algorithms". EAI Endorsed Transactions on e-Learning 8, nr 2 (8.02.2023): e1. http://dx.doi.org/10.4108/eetel.v8i2.3025.
Pełny tekst źródłaSarkar, Swagata, Sanjana R, Rajalakshmi S i Harini T J. "Simulation and detection of tamil speech accent using modified mel frequency cepstral coefficient algorithm". International Journal of Engineering & Technology 7, nr 3.3 (8.06.2018): 426. http://dx.doi.org/10.14419/ijet.v7i2.33.14202.
Pełny tekst źródłaGeetha, K., i R. Vadivel. "Phoneme Segmentation of Tamil Speech Signals Using Spectral Transition Measure". Oriental journal of computer science and technology 10, nr 1 (4.03.2017): 114–19. http://dx.doi.org/10.13005/ojcst/10.01.15.
Pełny tekst źródłaA, Akila, i Chandra E. "WORD BASED TAMIL SPEECH RECOGNITION USING TEMPORAL FEATURE BASED SEGMENTATION". ICTACT Journal on Image and Video Processing 5, nr 4 (1.05.2015): 1037–43. http://dx.doi.org/10.21917/ijivp.2015.0152.
Pełny tekst źródłaKalamani, M., M. Krishnamoorthi i R. S. Valarmathi. "Continuous Tamil Speech Recognition technique under non stationary noisy environments". International Journal of Speech Technology 22, nr 1 (30.11.2018): 47–58. http://dx.doi.org/10.1007/s10772-018-09580-8.
Pełny tekst źródłaRozprawy doktorskie na temat "Tamil speech recognition"
Lin, Wei-Ting, i 林威廷. "A Design of Trilingual Speech Recognition System for Chinese, Turkish and Tamil". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/83040195001830259860.
Pełny tekst źródła國立中山大學
電機工程學系研究所
100
In this thesis, both Turkish and Tamil, a language spoken in southern India and Sri Lanka, are studied in addition to Mandarin Chinese. It is hoped that the history, culture, and economy behind each language can be acquainted, tasted and appreciated during the learning process. In the ancient Chinese Han and Tang Dynasties, the “Silk Road” played the most magnificent role to connect among the Oriental China, the Western Turkey and the Southern India as the international trading corridor. In this modern era, Turkey and India are both the most important cotton exporting countries. Moreover, China, Turkey and India have been showing their potential to the newly emerging markets in the world. Therefore, a trilingual speech recognition system is developed and implemented to help us to learn Chinese, Turkish and Tamil, as well as to enhance our understanding to their history and culture. In this trilingual system, linear predicted cepstral coefficients, Mel-frequency cepstral coefficients, hidden Markov model and phonotactics are used as the two syllable feature models and the recognition model respectively. For the Chinese system, a 2,699 two-syllable words database is used as the training corpus. For the Turkish and Tamil systems, a database of 10 utterances per mono-syllable is established by applying their pronunciation rules. These 10 utterances are collected through reading 5 rounds of the same mono-syllables twice with tone 1 and tone 4. The correct rates of 88.30%, 84.21%, and 88.74% can be reached for the 82,000 Chinese, 30,795 Turkish, and 3,500 Tamil phrase databases respectively. The computation time for each system is within 1.5 seconds. Furthermore, a trilingual language-speech recognition system for 300 common words, composed of 100 words from each language, is developed. A 98% correct language-phrase recognition rate can be reached with the computation time less than 2 seconds.
Części książek na temat "Tamil speech recognition"
Sowmya, V., i A. Rajeswari. "Speech Emotion Recognition for Tamil Language Speakers". W Machine Intelligence and Signal Processing, 125–36. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1366-4_10.
Pełny tekst źródłaSaraswathi, S., i T. V. Geetha. "Building Language Models for Tamil Speech Recognition System". W Lecture Notes in Computer Science, 161–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30176-9_21.
Pełny tekst źródłaSaraswathi, S., i T. V. Geetha. "Implementation of Tamil Speech Recognition System Using Neural Networks". W Lecture Notes in Computer Science, 169–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30176-9_22.
Pełny tekst źródłaSrikanth, M., D. Pravena i D. Govind. "Tamil Speech Emotion Recognition Using Deep Belief Network(DBN)". W Advances in Intelligent Systems and Computing, 328–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67934-1_29.
Pełny tekst źródłaGirirajan, S., i A. Pandian. "Convolutional Neural Network Based Automatic Speech Recognition for Tamil Language". W Lecture Notes in Electrical Engineering, 91–103. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4831-2_8.
Pełny tekst źródłaBetina, Antony J., Paul N. R. Rejin i G. S. Mahalakshmi. "Applying entity recognition and verb role labelling for information extraction of Tamil biomedicine". W Artificial Intelligence and Speech Technology, 211–20. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003150664-24.
Pełny tekst źródłaKarpagavalli, S., R. Deepika, P. Kokila, K. Usha Rani i E. Chandra. "Isolated Tamil Digit Speech Recognition Using Template-Based and HMM-Based Approaches". W Communications in Computer and Information Science, 441–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29216-3_48.
Pełny tekst źródłaPrayla Shyry, S., A. Christy i Y. Bevish Jinila. "Speech Emotion Recognition of Tamil Language: An Implementation with Linear and Nonlinear Feature". W Lecture Notes in Electrical Engineering, 145–54. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9154-6_15.
Pełny tekst źródłaAkanksha, Akanksha. "Tamil Language Automatic Speech Recognition Based on Integrated Feature Extraction and Hybrid Deep Learning Model". W Lecture Notes in Networks and Systems, 283–92. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9719-8_23.
Pełny tekst źródłaVimala, C., i V. Radha. "Efficient Speaker Independent Isolated Speech Recognition for Tamil Language Using Wavelet Denoising and Hidden Markov Model". W Lecture Notes in Electrical Engineering, 557–69. India: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1000-9_52.
Pełny tekst źródłaStreszczenia konferencji na temat "Tamil speech recognition"
R., Kiran, Nivedha K., Pavithra Devi S. i Subha T. "Voice and speech recognition in Tamil language". W 2017 2nd International Conference on Computing and Communications Technologies (ICCCT). IEEE, 2017. http://dx.doi.org/10.1109/iccct2.2017.7972293.
Pełny tekst źródłaAkhilesh, A., Brinda P, Keerthana S, Deepa Gupta i Susmitha Vekkot. "Tamil Speech Recognition Using XLSR Wav2Vec2.0 & CTC Algorithm". W 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT). IEEE, 2022. http://dx.doi.org/10.1109/icccnt54827.2022.9984422.
Pełny tekst źródłaHarish, S., P. Vijayalakshmi i T. Nagarajan. "Significance of segmentation in phoneme based Tamil speech recognition system". W 2011 3rd International Conference on Electronics Computer Technology (ICECT). IEEE, 2011. http://dx.doi.org/10.1109/icectech.2011.5941739.
Pełny tekst źródłaGanesh, Akila A., i Chandra Ravichandran. "Grapheme Gaussian model and prosodic syllable based Tamil speech recognition system". W 2013 International Conference on Signal Processing and Communication (ICSC). IEEE, 2013. http://dx.doi.org/10.1109/icspcom.2013.6719821.
Pełny tekst źródłaSaraswathi, S., i T. V. Geetha. "Two Level Language Models for Improving the Performance of Tamil Speech Recognition". W International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007). IEEE, 2007. http://dx.doi.org/10.1109/iccima.2007.28.
Pełny tekst źródłaKarpagavalli, S., i E. Chandra. "Phoneme and word based model for tamil speech recognition using GMM-HMM". W 2015 International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, 2015. http://dx.doi.org/10.1109/icaccs.2015.7324119.
Pełny tekst źródłaChengalvarayan, Rathinavelu. "The use of nonlinear energy transformation for Tamil connected-digit speech recognition". W 6th International Conference on Spoken Language Processing (ICSLP 2000). ISCA: ISCA, 2000. http://dx.doi.org/10.21437/icslp.2000-733.
Pełny tekst źródłaRadha, V., C. Vimala i M. Krishnaveni. "Continuous Speech Recognition system for Tamil language using monophone-based Hidden Markov Model". W the Second International Conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2393216.2393255.
Pełny tekst źródłaRam, C. Sunitha, i R. Ponnusamy. "An effective automatic speech emotion recognition for Tamil language using Support Vector Machine". W 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT). IEEE, 2014. http://dx.doi.org/10.1109/icicict.2014.6781245.
Pełny tekst źródłaMadhavaraj, A., i A. G. Ramakrishnan. "Design and development of a large vocabulary, continuous speech recognition system for Tamil". W 2017 14th IEEE India Council International Conference (INDICON). IEEE, 2017. http://dx.doi.org/10.1109/indicon.2017.8488025.
Pełny tekst źródła