Gotowa bibliografia na temat „T cells”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „T cells”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "T cells"

1

F. Abdel Hamid, Mahmoud, Safaa M. Morsy, Mostafa Abou El Ela, Rehab A. Hegazy, Marwa M. Fawzy, Laila A. Rashed, Ahmed M. Omar, Eman R. Abdel Fattah i Doaa M. Hany. "T helper-17 cells and T regulatory cells in vitiligo". International Journal of Academic Research 5, nr 6 (10.12.2013): 273–78. http://dx.doi.org/10.7813/2075-4124.2013/5-6/a.34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Singh, Yuvraj. "Chimeric Antigen Receptors T Cells (CAR T) Therapy". International Journal of Science and Research (IJSR) 13, nr 5 (5.05.2024): 1563–66. http://dx.doi.org/10.21275/sr24523173932.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Y, Elshimali. "Chimeric Antigen Receptor T-Cell Therapy (Car T-Cells) in Solid Tumors, Resistance and Success". Bioequivalence & Bioavailability International Journal 6, nr 1 (2022): 1–6. http://dx.doi.org/10.23880/beba-16000163.

Pełny tekst źródła
Streszczenie:
CARs are chimeric synthetic antigen receptors that can be introduced into an immune cell to retarget its cytotoxicity toward a specific tumor antigen. CAR T-cells immunotherapy demonstrated significant success in the management of hematologic malignancies. Nevertheless, limited studies are present regarding its efficacy in solid and refractory tumors. It is well known that the major concerns regarding this technique include the risk of relapse and the resistance of tumor cells, in addition to high expenses and limited affordability. Several factors play a crucial role in improving the efficacy of immunotherapy, including tumor mutation burden (TMB), microsatellite instability (MSI), loss of heterozygosity (LOH), the APOBEC Protein Family, tumor microenvironment (TMI), and epigenetics. In this minireview, we address the current and future applications of CAR T-Cells against solid tumors and their measure for factors of resistance and success.
Style APA, Harvard, Vancouver, ISO itp.
4

CPK, Cheung. "T Cells, Endothelial Cell, Metabolism; A Therapeutic Target in Chronic Inflammation". Open Access Journal of Microbiology & Biotechnology 5, nr 2 (2020): 1–6. http://dx.doi.org/10.23880/oajmb-16000163.

Pełny tekst źródła
Streszczenie:
The role of metabolic reprogramming in the coordination of the immune response has gained increasing consideration in recent years. Indeed, it has become clear that changes in the metabolic status of immune cells can alter their functional properties. During inflammation, stimulated immune cells need to generate sufficient energy and biomolecules to support growth, proliferation and effector functions, including migration, cytotoxicity and production of cytokines. Thus, immune cells switch from oxidative phosphorylation to aerobic glycolysis, increasing their glucose uptake. A similar metabolic reprogramming has been described in endothelial cells which have the ability to interact with and modulate the function of immune cells and vice versa. Nonetheless, this complicated interplay between local environment, endothelial and immune cells metabolism, and immune functions remains incompletely understood. We analyze the metabolic reprogramming of endothelial and T cells during inflammation and we highlight some key components of this metabolic switch that can lead to the development of new therapeutics in chronic inflammatory disease.
Style APA, Harvard, Vancouver, ISO itp.
5

Meuer, Stefan C. "T cells". Immunology Today 12, nr 1 (styczeń 1991): 49. http://dx.doi.org/10.1016/0167-5699(91)90117-c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Stauss, Hans J. "Engineered T cells can fight malignant T cells". Blood 126, nr 8 (20.08.2015): 927–28. http://dx.doi.org/10.1182/blood-2015-07-652057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Scott, David W. "T regulatory cells turn on T regulatory cells". Blood 114, nr 19 (5.11.2009): 3975–76. http://dx.doi.org/10.1182/blood-2009-09-241406.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Zahran F, Zahran F., Al-haggar M. Al-haggar M i Derbala S. A. Derbala S.A. "Regulatory T Cells in Pediatric Lupus Nephritis". Indian Journal of Applied Research 3, nr 10 (1.10.2011): 1–3. http://dx.doi.org/10.15373/2249555x/oct2013/91.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Ng, Y. H., M. H. Oberbarnscheidt, H. C. K. Chandramoorthy, R. Hoffman i G. Chalasani. "B Cells Help Alloreactive T Cells Differentiate Into Memory T Cells". American Journal of Transplantation 10, nr 9 (27.08.2010): 1970–80. http://dx.doi.org/10.1111/j.1600-6143.2010.03223.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Suzuki, Haruhiko, Zhe Shi, Yusuke Okuno i Ken-ichi Isobe. "Are CD8+CD122+ cells regulatory T cells or memory T cells?" Human Immunology 69, nr 11 (listopad 2008): 751–54. http://dx.doi.org/10.1016/j.humimm.2008.08.285.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "T cells"

1

Carson, Bryan David. "Impaired T cell receptor signaling in regulatory T cells /". Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8337.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Lloyd, Angharad. "Gene editing in T-cells and T-cell targets". Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/98512/.

Pełny tekst źródła
Streszczenie:
Recent years have witnessed a rapid proliferation of gene editing in mammalian cells due to the increasing ease and reduced cost of targeted gene knockout. There has been much excitement about the prospect of engineering T-cells by gene editing in order to provide these cells with optimal attributes prior to adoptive cell therapy for cancer and autoimmune disease. I began by attempting to compare short hairpin RNA (shRNA) and zinc finger nuclease (ZFN) approaches using the CD8A gene as a target for proof of concept of gene editing in Molt3 cells. During the course of my studies the clustered regularly interspaced short palindromic repeats (CRISPR) mechanism for gene editing was discovered so I also included CRISPR/Cas9 in my studies. A direct comparison of the three gene editing tools indicated that the CRISPR/Cas9 system was superior in terms of ease, efficiency of knockout and cost. As the use of gene editing tools increases there are concerns about the inherent risks associated with the use of nuclease based gene editing tools prior to cellular therapy. Expression of nucleases can lead to off target mutagenesis and malignancy. To circumvent this problem I generated a non-nuclease based gene silencing system using the CD8A zinc finger (ZF) fused to a Krüppel associated box (KRAB) repressor domain. The ZF-KRAB fusion resulted in effective silencing of the CD8A gene in both the Molt3 cell line and in primary CD8+ T-cells. Importantly, unlike CRISPR/Cas9 based gene editing, the ZF-KRAB fusion was small enough to be transferred in a single lentiviral vector with a TCR allowing simultaneous redirection of patient T-cell specificity and alteration of T-cell function in a single construct. To improve the efficiency of gene editing with CRISPR/Cas9 I developed an ‘all in one’ CRISPR/Cas9 system which incorporated all elements of the CRISPR/Cas9 gene editing system in a single plasmid. The ‘all in one’ system was utilised to derive MHC-related protein 1 (MR1) deficient clones from the A549 lung carcinoma and THP-1 monocytic cell lines in order to study MR1 biology. Mucosal-associated invariant T-cell (MAIT) clones were not activated by MR1 deficient A549 or THP-1 clones infected with bacteria.
Style APA, Harvard, Vancouver, ISO itp.
3

Stefkova, Martina. "Regulatory T cells control the CD4 T cell repertoire". Doctoral thesis, Universite Libre de Bruxelles, 2016. https://dipot.ulb.ac.be/dspace/bitstream/2013/233151/3/Table.pdf.

Pełny tekst źródła
Streszczenie:
Des études récentes menées chez l’homme et la souris ont suggéré que la diversité du répertoire TCR pourrait jouer un rôle dans la protection contre des pathogènes à haut pouvoir mutagène. Afin d’étudier le répertoire des lymphocytes T CD4, nous avons utilisé un modèle de souris TCRβ transgéniques exprimant une chaine β spécifique du peptide env122-141 dans le contexte du MHCII. Suite à l’immunisation des souris TCRβ transgéniques avec des cellules dendritiques pulsées avec le peptide env, une rapide prolifération et une restriction du répertoire des lymphocytes T Vα2 CD4 spécifiques est observée. L’analyse de la diversité du répertoire de ces cellules par séquençage à haut débit, a montré l’émergence d’un répertoire plus divers dans des souris déplétées en lymphocytes T régulateurs. Ces résultats suggèrent qu’en plus du rôle des Tregs dans le contrôle de la magnitude de la réponse immunitaire, ces cellules pourraient également contrôler la diversité du répertoire des lymphocytes T suite à une stimulation antigénique.
Recent studies conducted in mice and humans have suggested a role for the TCR repertoire diversity in immune protection against pathogens displaying high antigenic variability. To study the CD4 T cell repertoire, we used a mouse model in which T cells transgenically express the TCRβ chain of a TCR specific to a MHCII-restricted peptide, env122-141. Upon immunization with peptide-pulsed dendritic cells, antigen-specific Vα2+ CD4+ T cells rapidly expand and display a restricted TCRα repertoire. In particular, analysis of receptor diversity by high-throughput TCR sequencing in immunized mice suggests the emergence of a broader CDR3 Vα2 repertoire in Treg-depleted mice. These results suggest that Tregs may play a role in the restriction of the CD4 T cell repertoire during an immune response, raising therefore the possibility that in addition to controlling the magnitude of an immune response, regulatory cells may also control the diversity of TCRs in response to antigen stimulation.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Style APA, Harvard, Vancouver, ISO itp.
4

Butcher, Sarah A. "T cell receptor genes of influenza A haemagglutinin specific T cells". Thesis, University College London (University of London), 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315271.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Crawford, A. "How B cells influence T cell responses". Thesis, University of Edinburgh, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.645118.

Pełny tekst źródła
Streszczenie:
Although studies using B cell deficient mice have been useful in understanding the importance of B cells under different conditions, it is difficult to then dissect exactly how B cells could be regulating T cell responses. By transferring OT-II transgenic T cells into either B cell deficient (μMT) or C57BL/6 mice, expansion and contraction of T cells can be tracked ex vivo. Expansion of OT-II cells is reduced in μMT mice compared to C57BL/6 mice. Thus, B cells can provide costimulatory signals, secrete cytokines and influence the lymphoid microarchitecture. To dissect which B cell factor(s) are involved in enhancing OT-II T cell expansion, a model system was used where one molecule on the B cells is depleted at one time. This was achieved by creating bone-marrow chimeras using a combination of μMT bone-marrow and wildtype or deficient bone-marrow. Thus, all the B cells are either wildtype or deficient for a particular molecule. The molecules examined were MHC-II, which is required for antigen presentation, CD40, due to its costimulatory role, and lymphotoxin-alpha, for its role in maintenance of splenic architecture. Using the OT-II adoptive transfer system, we have shown a requirement for MHC-II but not CD40 on B cells for efficient T cell expansion. In light of these observations, the role of B cell-derived MHC-II for T cell memory generation was examined. To do this, I used MHC-II tetramers to track a polyclonal population of T cells in the host.  Using this technique, I have shown that T cell memory is also diminished when the B cells do not express MHC-II. Thus, a cognate interaction with B cells is required for both efficient expansion and memory generation of CD4+ T cells.
Style APA, Harvard, Vancouver, ISO itp.
6

Sarris, Milka. "Dynamics of helper T cell and regulatory T cell interactions with dendritic cells". Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611896.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Smith, Trevor Robert Frank. "Modulation of CD4+ T cell responses by CD4+CD25+ regulatory T cells and modified T cell epitopes". Thesis, Imperial College London, 2004. http://hdl.handle.net/10044/1/11317.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Murray, Nicholas. "Costimulation of T cells and its role in T cell recognition of malignant colorectal cells in vitro". Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301247.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Li, Ming 1957. "Generation of CD8+ T cell immunity with help from CD4+ T cells". Monash University, Dept. of Pathology and Immunology, 2002. http://arrow.monash.edu.au/hdl/1959.1/8476.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Soper, David Michael. "Interleukin-2 receptor and T cell receptor signaling in regulatory T cells /". Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/8344.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "T cells"

1

Marc, Feldmann, Lamb Jonathan R i Owen M. J, red. T cells. New York: Wiley, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Annunziato, Francesco, Laura Maggi i Alessio Mazzoni, red. T-Helper Cells. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1311-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Gigante, Margherita, i Elena Ranieri, red. Cytotoxic T-Cells. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1507-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ono, Masahiro, red. Regulatory T-Cells. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2647-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Zanetti, Maurizio, i Stephen P. Schoenberger, red. Memory T Cells. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6451-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ranieri, Elena, red. Cytotoxic T-Cells. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1158-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Waisman, Ari, i Burkhard Becher, red. T-Helper Cells. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1212-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kassiotis, George, i Adrian Liston, red. Regulatory T Cells. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Zanetti, M. Memory T cells. New York: Springer Science+Business Media, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Graca, Luis, red. T-Follicular Helper Cells. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-1736-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "T cells"

1

Srinivasan, Ramachandran. "T Cells". W Encyclopedia of Systems Biology, 2119. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_959.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Nomura, Takashi, i Aya Shinohara. "T Cells". W Immunology of the Skin, 57–94. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55855-2_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Arampatzis, Adamantios, Lida Mademli, Thomas Reilly, Mike I. Lambert, Laurent Bosquet, Jean-Paul Richalet, Thierry Busso i in. "T Cells". W Encyclopedia of Exercise Medicine in Health and Disease, 843. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_3106.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Sakaguchi, Shimon. "Regulatory T Cells: History and Perspective". W Regulatory T Cells, 3–17. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Lahl, Katharina, i Tim Sparwasser. "In Vivo Depletion of FoxP3+ Tregs Using the DEREG Mouse Model". W Regulatory T Cells, 157–72. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Daniel, Carolin, Hidde Ploegh i Harald von Boehmer. "Antigen-Specific Induction of Regulatory T Cells In Vivo and In Vitro". W Regulatory T Cells, 173–85. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Nouzé, Clémence, Lise Pasquet i Joost P. M. van Meerwijk. "In Vitro Expansion of Alloantigen-Specific Regulatory T Cells and Their Use in Prevention of Allograft Rejection". W Regulatory T Cells, 187–96. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

d’Hennezel, Eva, i Ciriaco A. Piccirillo. "Analysis of Human FOXP3+ Treg Cells Phenotype and Function". W Regulatory T Cells, 199–218. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Hobeika, Amy C., Michael A. Morse, Takuya Osada, Sharon Peplinski, H. Kim Lyerly i Timothy M. Clay. "Depletion of Human Regulatory T Cells". W Regulatory T Cells, 219–31. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Schneider, Anya, i Jane H. Buckner. "Assessment of Suppressive Capacity by Human Regulatory T Cells Using a Reproducible, Bi-Directional CFSE-Based In Vitro Assay". W Regulatory T Cells, 233–41. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "T cells"

1

Mamonkin, Maksim. "Abstract IA17: CAR T cells for T-cell lymphoma". W Abstracts: AACR Virtual Meeting: Advances in Malignant Lymphoma; August 17-19, 2020. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2643-3249.lymphoma20-ia17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ahmed, M. N., A. Chester, A. McCormack, K. Ayyasola, N. Zaghloul, E. Miller i M. Yacoub. "CD4+ ChAT+ T Cells (ChAT T Cells) as a New Vasodilator". W American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a2675.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Correia, Eduardo, Clara Andrade, Leonardo Silva, Brenno Sessa, Luiza Abdo, Karina Hajdu, Emmanuel Aragão i Martín Bonamino. "Generation of 19bbz CAR-T cells in tcr knockout T-cells". W International Symposium on Immunobiologicals. Instituto de Tecnologia em Imunobiológicos, 2023. http://dx.doi.org/10.35259/isi.2023_58059.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Rabin, Moriah, Erin Cole, Scott Garforth, Jian Hua Zheng, Steven Almo i Harris Goldstein. "295 Novel T-cell immunotherapeutics enable the selective generation of more potently cytotoxic CD19 chimeric antigen receptor T-cells (CAR-T cells) from CMV-specific cytotoxic T-cells". W SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0295.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Matsuda, Tatsuo, Taigo Kato, Yuji Ikeda, Matthias Leisegang, Sachiko Yoshimura, Tetsuro Hikichi, Makiko Harada i in. "Abstract 625: Eradication of cancer cells by T-cell receptor-engineered T cells targeting neoantigens/oncoantigens". W Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-625.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Greenberg, Philip D., Sebastian Ochsenreither, Tom Schmitt, David Aggen, David Kranz, Matthias Wolfl, Jurgen Kuball i in. "Abstract IA1: T cells vs. tumor cells: Arming/deploying T cells for a successful battle." W Abstracts: AACR Special Conference on Tumor Immunology: Multidisciplinary Science Driving Basic and Clinical Advances; December 2-5, 2012; Miami, FL. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tumimm2012-ia1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kristensen, Nikolaj Pagh, Christina Heeke, Siri A. Tvingsholm, Anne-Mette Bjerregaard, Arianna Draghi, Amalie Kai Bentzen, Rikke Andersen, Marco Donia, Inge Marie Svane i Sine Reker Hadrup. "Abstract A14: Neoepitope-specific CD8+ T cells in adoptive T-cell transfer". W Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; November 17-20, 2019; Boston, MA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm19-a14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Jing, Ran, Mohamad Najia, Eleanor Meader, Luca Hensch, Edroaldo Lummertz da Rocha, R. Grant Rowe, Thorsten Schlaeger, Marcela Maus, Trista North i George Daley. "950 Epigenetic reprogramming of iPSC-derived T cells for CAR T cell therapy". W SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0950.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Hwang, Sunhee, Young H. Kim, Yeeun Bak i Byoung S. Kwon. "442-L Development of Panck T cells, MR1-restricted pan-cancer-killing CD8+T cells, as an adoptive T cell therapeutics". W SITC 38th Annual Meeting (SITC 2023) Abstracts Supplement 2. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0442-l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Qian, Feng, Jianqun Liao, Anthony J. Miliotto, Katherine A. Collins i Kunle Odunsi. "Abstract A35: Ovarian cancer stem cells subvert tumor-specific T cells by disrupting T cells’ metabolic fitness". W Abstracts: AACR Special Conference: Addressing Critical Questions in Ovarian Cancer Research and Treatment; October 1-4, 2017; Pittsburgh, PA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1557-3265.ovca17-a35.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "T cells"

1

Chen, Xiuxu, i Jenny E. Gumperz. Human CD1d-Restricted Natural Killer T (NKT) Cell Cytotoxicity Against Myeloid Cells. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2006. http://dx.doi.org/10.21236/ada462826.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Wong, Jr, i K. K. Regulatory T Cells and Host Anti-CML Responses. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2008. http://dx.doi.org/10.21236/ada487614.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Wong, Jr, i K. K. Regulatory T Cells and Host Anti-CML Responses. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2009. http://dx.doi.org/10.21236/ada510759.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Knutson, Keith L. CD8 T Cells and Immunoediting of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2008. http://dx.doi.org/10.21236/ada624685.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Junghans, Richard P. Designer T-Cells for Breast Cancer Therapy: Phase I Studies. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1999. http://dx.doi.org/10.21236/ada394380.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Junghans, Richard P. Designer T Cells for Breast Cancer Therapy: Phase I Studies. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2001. http://dx.doi.org/10.21236/ada398295.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Junghans, Richard P. Designer T Cells for Breast Cancer Therapy: Phase I Studies. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2002. http://dx.doi.org/10.21236/ada408881.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Junghans, Richard. Designer T Cells for Breast Cancer Therapy: Phase I Studies. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2000. http://dx.doi.org/10.21236/ada383028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Coukos, George. Targeting Breast Cancer with T Cells Redirected to the Vasculature. Addendum. Fort Belvoir, VA: Defense Technical Information Center, październik 2012. http://dx.doi.org/10.21236/ada570217.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Marshall, Renee M. Regulation of T-Type Cyclin/CDK9 Complexes in Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2005. http://dx.doi.org/10.21236/ada460789.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii