Gotowa bibliografia na temat „Systems for Machine Learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Systems for Machine Learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Systems for Machine Learning"
Molino, Piero, i Christopher Ré. "Declarative machine learning systems". Communications of the ACM 65, nr 1 (styczeń 2022): 42–49. http://dx.doi.org/10.1145/3475167.
Pełny tekst źródłaMolino, Piero, i Christopher Ré. "Declarative Machine Learning Systems". Queue 19, nr 3 (30.06.2021): 46–76. http://dx.doi.org/10.1145/3475965.3479315.
Pełny tekst źródłaSchneier, Bruce. "Attacking Machine Learning Systems". Computer 53, nr 5 (maj 2020): 78–80. http://dx.doi.org/10.1109/mc.2020.2980761.
Pełny tekst źródłaLitz, Heiner, i Milad Hashemi. "Machine Learning for Systems". IEEE Micro 40, nr 5 (1.09.2020): 6–7. http://dx.doi.org/10.1109/mm.2020.3016551.
Pełny tekst źródłaSidorov, Denis, Fang Liu i Yonghui Sun. "Machine Learning for Energy Systems". Energies 13, nr 18 (10.09.2020): 4708. http://dx.doi.org/10.3390/en13184708.
Pełny tekst źródłaEt. al., Mathew Chacko,. "Cyber-Physical Quality Systems in Manufacturing". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, nr 2 (11.04.2021): 2006–18. http://dx.doi.org/10.17762/turcomat.v12i2.1805.
Pełny tekst źródłaKelly, Terence. "Steampunk Machine Learning". Queue 19, nr 6 (31.12.2021): 5–17. http://dx.doi.org/10.1145/3511543.
Pełny tekst źródłaAmbore, Anil Kumar, T. Sri Sai Charan, U. Rohit Reddy, T. Samara Simha Reddy i Tarun G. "Flood Prediction using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 11, nr 5 (31.05.2023): 363–67. http://dx.doi.org/10.22214/ijraset.2023.51528.
Pełny tekst źródłaAnggi Rachmawati i Yossaepurrohman. "Analysis of Machine Learning Systems for Cyber Physical Systems". International Transactions on Education Technology (ITEE) 1, nr 1 (24.11.2022): 1–9. http://dx.doi.org/10.34306/itee.v1i1.170.
Pełny tekst źródłaAnggi Rachmawati i Yossaepurrohman. "Analysis of Machine Learning Systems for Cyber Physical Systems". International Transactions on Education Technology (ITEE) 1, nr 1 (24.11.2022): 1–9. http://dx.doi.org/10.33050/itee.v1i1.170.
Pełny tekst źródłaRozprawy doktorskie na temat "Systems for Machine Learning"
Shukla, Ritesh. "Machine learning ecosystem : implications for business strategy centered on machine learning". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/107342.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 48-50).
As interest for adopting machine learning as a core component of a business strategy increases, business owners face the challenge of integrating an uncertain and rapidly evolving technology into their organization, and depending on this for the success of their strategy. The field of Machine learning has a rich set of literature for modeling of technical systems that implement machine learning. This thesis attempts to connect the literature for business and technology and for evolution and adoption of technology to the emergent properties of machine learning systems. This thesis provides high-level levers and frameworks to better prepare business owners to adopt machine learning to satisfy their strategic goals.
by Ritesh Shukla.
S.M. in Engineering and Management
Andersson, Viktor. "Machine Learning in Logistics: Machine Learning Algorithms : Data Preprocessing and Machine Learning Algorithms". Thesis, Luleå tekniska universitet, Datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64721.
Pełny tekst źródłaData Ductus är ett svenskt IT-konsultbolag, deras kundbas sträcker sig från små startups till stora redan etablerade företag. Företaget har stadigt växt sedan 80-talet och har etablerat kontor både i Sverige och i USA. Med hjälp av maskininlärning kommer detta projket att presentera en möjlig lösning på de fel som kan uppstå inom logistikverksamheten, orsakade av den mänskliga faktorn.Ett sätt att förbehandla data innan den tillämpas på en maskininlärning algoritm, liksom ett par algoritmer för användning kommer att presenteras.
Swere, Erick A. R. "Machine learning in embedded systems". Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/4969.
Pełny tekst źródłaVerleyen, Wim. "Machine learning for systems pathology". Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/4512.
Pełny tekst źródłaRoderus, Jens, Simon Larson i Eric Pihl. "Hadoop scalability evaluation for machine learning algorithms on physical machines : Parallel machine learning on computing clusters". Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20102.
Pełny tekst źródłaJohansson, Richard. "Machine learning på tidsseriedataset : En utvärdering av modeller i Azure Machine Learning Studio". Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-71223.
Pełny tekst źródłaSchneider, C. "Using unsupervised machine learning for fault identification in virtual machines". Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/7327.
Pełny tekst źródłaMichailidis, Marios. "Investigating machine learning methods in recommender systems". Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/10031000/.
Pełny tekst źródłaIlyas, Andrew. "On practical robustness of machine learning systems". Thesis, Massachusetts Institute of Technology, 2018. https://hdl.handle.net/1721.1/122911.
Pełny tekst źródłaThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 71-79).
We consider the importance of robustness in evaluating machine learning systems, an in particular systems involving deep learning. We consider these systems' vulnerability to adversarial examples--subtle, crafted perturbations to inputs which induce large change in output. We show that these adversarial examples are not only theoretical concern, by desigining the first 3D adversarial objects, and by demonstrating that these examples can be constructed even when malicious actors have little power. We suggest a potential avenue for building robust deep learning models by leveraging generative models.
by Andrew Ilyas.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
ROSA, BRUSIN ANN MARGARETH. "Machine Learning Applications to Optical Communication Systems". Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2967019.
Pełny tekst źródłaKsiążki na temat "Systems for Machine Learning"
Chen, Joy Iong-Zong, Haoxiang Wang, Ke-Lin Du i V. Suma, red. Machine Learning and Autonomous Systems. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7996-4.
Pełny tekst źródłaAo, Sio-Iong, Burghard Rieger i Mahyar A. Amouzegar, red. Machine Learning and Systems Engineering. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9419-3.
Pełny tekst źródłaB, Rieger Burghard, Amouzegar Mahyar A i SpringerLink (Online service), red. Machine Learning and Systems Engineering. Dordrecht: Springer Science+Business Media B.V., 2011.
Znajdź pełny tekst źródłaNandan Mohanty, Sachi, Vicente Garcia Diaz i G. A. E. Satish Kumar, red. Intelligent Systems and Machine Learning. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-35078-8.
Pełny tekst źródłaNandan Mohanty, Sachi, Vicente Garcia Diaz i G. A. E. Satish Kumar, red. Intelligent Systems and Machine Learning. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-35081-8.
Pełny tekst źródłaChandran, C. Karthik, M. Rajalakshmi, Sachi Nandan Mohanty i Subrata Chowdhury. Machine Learning for Healthcare Systems. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003438816.
Pełny tekst źródłaErtekin, Şeyda. Algorithms for efficient learning systems: Online and active learning approaches. Saarbrücken: VDM Verlag Dr. Müller, 2009.
Znajdź pełny tekst źródłaBeyerer, Jürgen, Christian Kühnert i Oliver Niggemann, red. Machine Learning for Cyber Physical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-58485-9.
Pełny tekst źródłaBeyerer, Jürgen, Alexander Maier i Oliver Niggemann, red. Machine Learning for Cyber Physical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-62746-4.
Pełny tekst źródłaNiggemann, Oliver, i Jürgen Beyerer, red. Machine Learning for Cyber Physical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48838-6.
Pełny tekst źródłaCzęści książek na temat "Systems for Machine Learning"
Zielesny, Achim. "Machine Learning". W Intelligent Systems Reference Library, 221–380. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21280-2_4.
Pełny tekst źródłaGrosan, Crina, i Ajith Abraham. "Machine Learning". W Intelligent Systems Reference Library, 261–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21004-4_10.
Pełny tekst źródłaZielesny, Achim. "Machine Learning". W Intelligent Systems Reference Library, 229–406. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32545-3_4.
Pełny tekst źródłaSubramanian, Devika, i Trevor A. Cohen. "Machine Learning Systems". W Cognitive Informatics in Biomedicine and Healthcare, 135–211. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09108-7_6.
Pełny tekst źródłaWehenkel, Louis A. "Machine Learning". W Automatic Learning Techniques in Power Systems, 99–144. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5451-6_5.
Pełny tekst źródłaSotiropoulos, Dionisios N., i George A. Tsihrintzis. "Artificial Immune Systems". W Machine Learning Paradigms, 159–235. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47194-5_7.
Pełny tekst źródłaHulten, Geoff. "Machine Learning Intelligence". W Building Intelligent Systems, 245–61. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3432-7_20.
Pełny tekst źródłaKulkarni, Parag. "Systemic Machine Learning". W Intelligent Systems Reference Library, 49–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55312-2_3.
Pełny tekst źródłaKulkarni, Parag. "Creative Machine Learning". W Intelligent Systems Reference Library, 87–118. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55312-2_5.
Pełny tekst źródłaGalakatos, Alex, Andrew Crotty i Tim Kraska. "Distributed Machine Learning". W Encyclopedia of Database Systems, 1–6. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4899-7993-3_80647-1.
Pełny tekst źródłaStreszczenia konferencji na temat "Systems for Machine Learning"
Chu, Albert B., Du T. Nguyen, Alan D. Kaplan i Brian Giera. "Image classification and control of microfluidic systems". W Applications of Machine Learning, redaktorzy Michael E. Zelinski, Tarek M. Taha, Jonathan Howe, Abdul A. Awwal i Khan M. Iftekharuddin. SPIE, 2019. http://dx.doi.org/10.1117/12.2530416.
Pełny tekst źródła"Machine Learning". W 2019 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2019. http://dx.doi.org/10.1109/iwssip.2019.8787334.
Pełny tekst źródła"Machine Learning". W 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2022. http://dx.doi.org/10.1109/iwssip55020.2022.9854395.
Pełny tekst źródłaIvanov, Tonislav, Ayush Kumar, Denis Sharoukhov, Francis A. Ortega i Matthew Putman. "DeepFocus: A deep learning model for focusing microscope systems". W Applications of Machine Learning 2020, redaktorzy Michael E. Zelinski, Tarek M. Taha, Jonathan Howe, Abdul A. Awwal i Khan M. Iftekharuddin. SPIE, 2020. http://dx.doi.org/10.1117/12.2568990.
Pełny tekst źródłaAxtell, Travis, Lucas A. Overbey i Lisa Woerner. "Machine learning in complex systems". W Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR IX, redaktorzy Tien Pham, Michael A. Kolodny i Dietrich M. Wiegmann. SPIE, 2018. http://dx.doi.org/10.1117/12.2309547.
Pełny tekst źródłaZhang, Jeff Jun, Kang Liu, Faiq Khalid, Muhammad Abdullah Hanif, Semeen Rehman, Theocharis Theocharides, Alessandro Artussi, Muhammad Shafique i Siddharth Garg. "Building Robust Machine Learning Systems". W DAC '19: The 56th Annual Design Automation Conference 2019. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3316781.3323472.
Pełny tekst źródłaMartin, Hugo, Juliana Alves Pereira, Mathieu Acher i Paul Temple. "Machine Learning and Configurable Systems". W SPLC 2019: 23rd International Systems and Software Product Line Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3336294.3342383.
Pełny tekst źródłaFanca, Alexandra, Adela Puscasiu, Dan-Ioan Gota i Honoriu Valean. "Recommendation Systems with Machine Learning". W 2020 21th International Carpathian Control Conference (ICCC). IEEE, 2020. http://dx.doi.org/10.1109/iccc49264.2020.9257290.
Pełny tekst źródłaEL MESTARI, Soumia Zohra. "Privacy Preserving Machine Learning Systems". W AIES '22: AAAI/ACM Conference on AI, Ethics, and Society. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3514094.3539530.
Pełny tekst źródłaPereira, Juliana Alves, Hugo Martin, Paul Temple i Mathieu Acher. "Machine learning and configurable systems". W SPLC '20: 24th ACM International Systems and Software Product Line Conference. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3382025.3414976.
Pełny tekst źródłaRaporty organizacyjne na temat "Systems for Machine Learning"
Rouet-Leduc, Bertrand Philippe Gerard. Fault systems monitoring using machine learning. Office of Scientific and Technical Information (OSTI), wrzesień 2019. http://dx.doi.org/10.2172/1569601.
Pełny tekst źródłaCary, Dakota, i Daniel Cebul. Destructive Cyber Operations and Machine Learning. Center for Security and Emerging Technology, listopad 2020. http://dx.doi.org/10.51593/2020ca003.
Pełny tekst źródłaGordon, Diane F., i William M. Spears. Machine Learning Systems: Part 1. Concept Learning from Examples with AQ15 and Related Systems. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1991. http://dx.doi.org/10.21236/ada242472.
Pełny tekst źródłaMusser, Micah. Adversarial Machine Learning and Cybersecurity. Center for Security and Emerging Technology, kwiecień 2023. http://dx.doi.org/10.51593/2022ca003.
Pełny tekst źródłaValasek, John, i Suman Chakravorty. Machine Learning Control For Highly Reconfigurable High-Order Systems. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2015. http://dx.doi.org/10.21236/ada614672.
Pełny tekst źródłaStone, Peter, i Manuela Veloso. Multiagent Systems: A Survey from a Machine Learning Perspective. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1997. http://dx.doi.org/10.21236/ada333248.
Pełny tekst źródłaAnania, Mark, George Corbin, Matthew Kovacs, Kevin Nelson i Jeremy Tobias. Thutmose - Investigation of Machine Learning-Based Intrusion Detection Systems. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2016. http://dx.doi.org/10.21236/ad1011870.
Pełny tekst źródłaNickerson, Jeffrey, Kalle Lyytinen i John L. King. Automated Vehicles: A Human/Machine Co-learning Perspective. SAE International, kwiecień 2022. http://dx.doi.org/10.4271/epr2022009.
Pełny tekst źródłaSzunyogh, Istvan, Edward Ott i Brian Hunt. Machine-Learning-Assisted Hybrid Earth System Modelling. Office of Scientific and Technical Information (OSTI), kwiecień 2021. http://dx.doi.org/10.2172/1769745.
Pełny tekst źródłaRudner, Tim, i Helen Toner. Key Concepts in AI Safety: Interpretability in Machine Learning. Center for Security and Emerging Technology, marzec 2021. http://dx.doi.org/10.51593/20190042.
Pełny tekst źródła