Artykuły w czasopismach na temat „Systems Biology, Synthetic Biology, Metabolic Engineering”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Systems Biology, Synthetic Biology, Metabolic Engineering”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Nielsen, Jens, i Jack T. Pronk. "Metabolic engineering, synthetic biology and systems biology". FEMS Yeast Research 12, nr 2 (4.01.2012): 103. http://dx.doi.org/10.1111/j.1567-1364.2011.00783.x.
Pełny tekst źródłaHe, Fei, Ettore Murabito i Hans V. Westerhoff. "Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering". Journal of The Royal Society Interface 13, nr 117 (kwiecień 2016): 20151046. http://dx.doi.org/10.1098/rsif.2015.1046.
Pełny tekst źródłaChoi, Kyeong Rok, Woo Dae Jang, Dongsoo Yang, Jae Sung Cho, Dahyeon Park i Sang Yup Lee. "Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering". Trends in Biotechnology 37, nr 8 (sierpień 2019): 817–37. http://dx.doi.org/10.1016/j.tibtech.2019.01.003.
Pełny tekst źródłaLee, Hyang-Mi, Phuong Vo i Dokyun Na. "Advancement of Metabolic Engineering Assisted by Synthetic Biology". Catalysts 8, nr 12 (4.12.2018): 619. http://dx.doi.org/10.3390/catal8120619.
Pełny tekst źródłaFong, Stephen S. "Computational approaches to metabolic engineering utilizing systems biology and synthetic biology". Computational and Structural Biotechnology Journal 11, nr 18 (sierpień 2014): 28–34. http://dx.doi.org/10.1016/j.csbj.2014.08.005.
Pełny tekst źródłaKing, Jason R., Steven Edgar, Kangjian Qiao i Gregory Stephanopoulos. "Accessing Nature’s diversity through metabolic engineering and synthetic biology". F1000Research 5 (24.03.2016): 397. http://dx.doi.org/10.12688/f1000research.7311.1.
Pełny tekst źródłaChen, Bor-Sen, i Chia-Chou Wu. "Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering". Cells 2, nr 4 (11.10.2013): 635–88. http://dx.doi.org/10.3390/cells2040635.
Pełny tekst źródłaMcArthur, George H., i Stephen S. Fong. "Toward Engineering Synthetic Microbial Metabolism". Journal of Biomedicine and Biotechnology 2010 (2010): 1–10. http://dx.doi.org/10.1155/2010/459760.
Pełny tekst źródłaMa, Jingbo, Yang Gu, Monireh Marsafari i Peng Xu. "Synthetic biology, systems biology, and metabolic engineering of Yarrowia lipolytica toward a sustainable biorefinery platform". Journal of Industrial Microbiology & Biotechnology 47, nr 9-10 (4.07.2020): 845–62. http://dx.doi.org/10.1007/s10295-020-02290-8.
Pełny tekst źródłaJeong, Yujin, Sang-Hyeok Cho, Hookeun Lee, Hyung-Kyoon Choi, Dong-Myung Kim, Choul-Gyun Lee, Suhyung Cho i Byung-Kwan Cho. "Current Status and Future Strategies to Increase Secondary Metabolite Production from Cyanobacteria". Microorganisms 8, nr 12 (24.11.2020): 1849. http://dx.doi.org/10.3390/microorganisms8121849.
Pełny tekst źródłaMuhich, Anna Jo, Amanda Agosto-Ramos i Daniel J. Kliebenstein. "The ease and complexity of identifying and using specialized metabolites for crop engineering". Emerging Topics in Life Sciences 6, nr 2 (18.03.2022): 153–62. http://dx.doi.org/10.1042/etls20210248.
Pełny tekst źródłaSajid, Moon, Chaitanya N. Channakesavula, Shane R. Stone i Parwinder Kaur. "Synthetic Biology towards Improved Flavonoid Pharmacokinetics". Biomolecules 11, nr 5 (18.05.2021): 754. http://dx.doi.org/10.3390/biom11050754.
Pełny tekst źródłaBartley, Bryan, Jacob Beal, Kevin Clancy, Goksel Misirli, Nicholas Roehner, Ernst Oberortner, Matthew Pocock i in. "Synthetic Biology Open Language (SBOL) Version 2.0.0". Journal of Integrative Bioinformatics 12, nr 2 (1.06.2015): 902–91. http://dx.doi.org/10.1515/jib-2015-272.
Pełny tekst źródłaMeyer, Conary, Yusuke Nakamura, Blake J. Rasor, Ashty S. Karim, Michael C. Jewett i Cheemeng Tan. "Analysis of the Innovation Trend in Cell-Free Synthetic Biology". Life 11, nr 6 (11.06.2021): 551. http://dx.doi.org/10.3390/life11060551.
Pełny tekst źródłaLacerda, Maria Priscila, Eun Joong Oh i Carrie Eckert. "The Model System Saccharomyces cerevisiae Versus Emerging Non-Model Yeasts for the Production of Biofuels". Life 10, nr 11 (21.11.2020): 299. http://dx.doi.org/10.3390/life10110299.
Pełny tekst źródłaLv, Xueqin, Shixiu Cui, Yang Gu, Jianghua Li, Guocheng Du i Long Liu. "Enzyme Assembly for Compartmentalized Metabolic Flux Control". Metabolites 10, nr 4 (26.03.2020): 125. http://dx.doi.org/10.3390/metabo10040125.
Pełny tekst źródłaLou, Hanghang, Lifei Hu, Hongyun Lu, Tianyu Wei i Qihe Chen. "Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review". Molecules 26, nr 15 (27.07.2021): 4522. http://dx.doi.org/10.3390/molecules26154522.
Pełny tekst źródłaVilkhovoy, Michael, Abhinav Adhikari, Sandra Vadhin i Jeffrey D. Varner. "The Evolution of Cell Free Biomanufacturing". Processes 8, nr 6 (8.06.2020): 675. http://dx.doi.org/10.3390/pr8060675.
Pełny tekst źródłaBlatt-Janmaat, Kaitlyn, i Yang Qu. "The Biochemistry of Phytocannabinoids and Metabolic Engineering of Their Production in Heterologous Systems". International Journal of Molecular Sciences 22, nr 5 (28.02.2021): 2454. http://dx.doi.org/10.3390/ijms22052454.
Pełny tekst źródłaDavis, Jacob D., i Eberhard O. Voit. "Metrics for regulated biochemical pathway systems". Bioinformatics 35, nr 12 (14.11.2018): 2118–24. http://dx.doi.org/10.1093/bioinformatics/bty942.
Pełny tekst źródłaKim, Juhyun, Manuel Salvador, Elizabeth Saunders, Jaime González, Claudio Avignone-Rossa i Jose Ignacio Jiménez. "Properties of alternative microbial hosts used in synthetic biology: towards the design of a modular chassis". Essays in Biochemistry 60, nr 4 (30.11.2016): 303–13. http://dx.doi.org/10.1042/ebc20160015.
Pełny tekst źródłaPandey, Ramesh Prasad, Prakash Parajuli i Jae Kyung Sohng. "Metabolic engineering of glycosylated polyketide biosynthesis". Emerging Topics in Life Sciences 2, nr 3 (6.08.2018): 389–403. http://dx.doi.org/10.1042/etls20180011.
Pełny tekst źródłaTan, Yong Quan, Bo Xue i Wen Shan Yew. "Genetically Encodable Scaffolds for Optimizing Enzyme Function". Molecules 26, nr 5 (4.03.2021): 1389. http://dx.doi.org/10.3390/molecules26051389.
Pełny tekst źródłaSalim, Vonny, Sara-Alexis Jarecki, Marshall Vick i Ryan Miller. "Advances in Metabolic Engineering of Plant Monoterpene Indole Alkaloids". Biology 12, nr 8 (27.07.2023): 1056. http://dx.doi.org/10.3390/biology12081056.
Pełny tekst źródłaLiu, Fenghua, Lingling He, Sheng Dong, Jinsong Xuan, Qiu Cui i Yingang Feng. "Artificial Small Molecules as Cofactors and Biomacromolecular Building Blocks in Synthetic Biology: Design, Synthesis, Applications, and Challenges". Molecules 28, nr 15 (3.08.2023): 5850. http://dx.doi.org/10.3390/molecules28155850.
Pełny tekst źródłaZhang, Haoran, Brian Pereira, Zhengjun Li i Gregory Stephanopoulos. "Engineering Escherichia coli coculture systems for the production of biochemical products". Proceedings of the National Academy of Sciences 112, nr 27 (25.06.2015): 8266–71. http://dx.doi.org/10.1073/pnas.1506781112.
Pełny tekst źródłaKhan, Aqib Zafar, Muhammad Bilal, Shahid Mehmood, Ashutosh Sharma i Hafiz M. N. Iqbal. "State-of-the-Art Genetic Modalities to Engineer Cyanobacteria for Sustainable Biosynthesis of Biofuel and Fine-Chemicals to Meet Bio–Economy Challenges". Life 9, nr 3 (27.06.2019): 54. http://dx.doi.org/10.3390/life9030054.
Pełny tekst źródłaYe, Jian-Wen, i Guo-Qiang Chen. "Halomonas as a chassis". Essays in Biochemistry 65, nr 2 (lipiec 2021): 393–403. http://dx.doi.org/10.1042/ebc20200159.
Pełny tekst źródłaTrantidou, Tatiana, Linda Dekker, Karen Polizzi, Oscar Ces i Yuval Elani. "Functionalizing cell-mimetic giant vesicles with encapsulated bacterial biosensors". Interface Focus 8, nr 5 (17.08.2018): 20180024. http://dx.doi.org/10.1098/rsfs.2018.0024.
Pełny tekst źródłaIvanov, Ivan, Sebastián López Castellanos, Severo Balasbas, Lado Otrin, Nika Marušič, Tanja Vidaković-Koch i Kai Sundmacher. "Bottom-Up Synthesis of Artificial Cells: Recent Highlights and Future Challenges". Annual Review of Chemical and Biomolecular Engineering 12, nr 1 (7.06.2021): 287–308. http://dx.doi.org/10.1146/annurev-chembioeng-092220-085918.
Pełny tekst źródłaMoses, Melanie, George Bezerra, Benjamin Edwards, James Brown i Stephanie Forrest. "Energy and time determine scaling in biological and computer designs". Philosophical Transactions of the Royal Society B: Biological Sciences 371, nr 1701 (19.08.2016): 20150446. http://dx.doi.org/10.1098/rstb.2015.0446.
Pełny tekst źródłaKim, Kangsan, Donghui Choe, Dae-Hee Lee i Byung-Kwan Cho. "Engineering Biology to Construct Microbial Chassis for the Production of Difficult-to-Express Proteins". International Journal of Molecular Sciences 21, nr 3 (2.02.2020): 990. http://dx.doi.org/10.3390/ijms21030990.
Pełny tekst źródłaTheodosiou, Eleni. "Engineering Strategies for Efficient Bioconversion of Glycerol to Value-Added Products by Yarrowia lipolytica". Catalysts 13, nr 4 (27.03.2023): 657. http://dx.doi.org/10.3390/catal13040657.
Pełny tekst źródłaYuan, Guoliang, Md Mahmudul Hassan, Degao Liu, Sung Don Lim, Won Cheol Yim, John C. Cushman, Kasey Markel i in. "Biosystems Design to Accelerate C3-to-CAM Progression". BioDesign Research 2020 (12.10.2020): 1–16. http://dx.doi.org/10.34133/2020/3686791.
Pełny tekst źródłaGoelzer, Anne, i Vincent Fromion. "Resource allocation in living organisms". Biochemical Society Transactions 45, nr 4 (7.07.2017): 945–52. http://dx.doi.org/10.1042/bst20160436.
Pełny tekst źródłaMohany, Nurul Amira Mohammad, Alessandra Totti, Keith R. Naylor i Harald Janovjak. "Microbial methionine transporters and biotechnological applications". Applied Microbiology and Biotechnology 105, nr 10 (30.04.2021): 3919–29. http://dx.doi.org/10.1007/s00253-021-11307-w.
Pełny tekst źródłaZhang, Quanwei, Yaokang Wu, Mengyue Gong, Hongzhi Zhang, Yanfeng Liu, Xueqin Lv, Jianghua Li, Guocheng Du i Long Liu. "Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain". Essays in Biochemistry 65, nr 2 (lipiec 2021): 173–85. http://dx.doi.org/10.1042/ebc20210011.
Pełny tekst źródłaYang, Dongsoo, Cindy Pricilia Surya Prabowo, Hyunmin Eun, Seon Young Park, In Jin Cho, Song Jiao i Sang Yup Lee. "Escherichia coli as a platform microbial host for systems metabolic engineering". Essays in Biochemistry 65, nr 2 (lipiec 2021): 225–46. http://dx.doi.org/10.1042/ebc20200172.
Pełny tekst źródłaChoudhary, M. Iqbal, Fatima Z. Basha, Ghulam Abbas, Shamsun Nahar Khan i S. Adnan Ali Shah. "Science at the interface of chemistry and biology: Discoveries of α-glucosidase inhibitors and antiglycation agents". Pure and Applied Chemistry 79, nr 12 (1.01.2007): 2263–68. http://dx.doi.org/10.1351/pac200779122263.
Pełny tekst źródłaWinston, Dennis S., i David D. Boehr. "Catalyst-Based Biomolecular Logic Gates". Catalysts 12, nr 7 (29.06.2022): 712. http://dx.doi.org/10.3390/catal12070712.
Pełny tekst źródłaTumen-Velasquez, Melissa, Christopher W. Johnson, Alaa Ahmed, Graham Dominick, Emily M. Fulk, Payal Khanna, Sarah A. Lee i in. "Accelerating pathway evolution by increasing the gene dosage of chromosomal segments". Proceedings of the National Academy of Sciences 115, nr 27 (18.06.2018): 7105–10. http://dx.doi.org/10.1073/pnas.1803745115.
Pełny tekst źródłaOyarzún, Diego A., i Madalena Chaves. "Design of a bistable switch to control cellular uptake". Journal of The Royal Society Interface 12, nr 113 (grudzień 2015): 20150618. http://dx.doi.org/10.1098/rsif.2015.0618.
Pełny tekst źródłaMarchetto, Francesca, Marco Roverso, Davide Righetti, Sara Bogialli, Francesco Filippini, Elisabetta Bergantino i Eleonora Sforza. "Bioremediation of Per- and Poly-Fluoroalkyl Substances (PFAS) by Synechocystis sp. PCC 6803: A Chassis for a Synthetic Biology Approach". Life 11, nr 12 (26.11.2021): 1300. http://dx.doi.org/10.3390/life11121300.
Pełny tekst źródłaScossa, Federico, Maria Benina, Saleh Alseekh, Youjun Zhang i Alisdair Fernie. "The Integration of Metabolomics and Next-Generation Sequencing Data to Elucidate the Pathways of Natural Product Metabolism in Medicinal Plants". Planta Medica 84, nr 12/13 (29.05.2018): 855–73. http://dx.doi.org/10.1055/a-0630-1899.
Pełny tekst źródłaOyarzún, Diego A., i Guy-Bart V. Stan. "Synthetic gene circuits for metabolic control: design trade-offs and constraints". Journal of The Royal Society Interface 10, nr 78 (6.01.2013): 20120671. http://dx.doi.org/10.1098/rsif.2012.0671.
Pełny tekst źródłaDavey, James A., i Corey J. Wilson. "Engineered signal-coupled inducible promoters: measuring the apparent RNA-polymerase resource budget". Nucleic Acids Research 48, nr 17 (5.09.2020): 9995–10012. http://dx.doi.org/10.1093/nar/gkaa734.
Pełny tekst źródłaJúlvez, Jorge, i Stephen G. Oliver. "A unifying modelling formalism for the integration of stoichiometric and kinetic models". Journal of The Royal Society Interface 17, nr 169 (sierpień 2020): 20200341. http://dx.doi.org/10.1098/rsif.2020.0341.
Pełny tekst źródłaBelov, D. V., i S. N. Belyaev. "Prospects for recycling plastic waste based on polyethylene glycol terephthalate using living systems (a review)". Proceedings of Universities. Applied Chemistry and Biotechnology 12, nr 2 (4.07.2022): 238–53. http://dx.doi.org/10.21285/2227-2925-2022-12-2-238-253.
Pełny tekst źródłaClavijo-Buriticá, Diana Carolina, Catalina Arévalo-Ferro i Andrés Fernando González Barrios. "A Holistic Approach from Systems Biology Reveals the Direct Influence of the Quorum-Sensing Phenomenon on Pseudomonas aeruginosa Metabolism to Pyoverdine Biosynthesis". Metabolites 13, nr 5 (16.05.2023): 659. http://dx.doi.org/10.3390/metabo13050659.
Pełny tekst źródłaPalur, Dileep Sai Kumar, Shannon R. Pressley i Shota Atsumi. "Microbial Production of Human Milk Oligosaccharides". Molecules 28, nr 3 (3.02.2023): 1491. http://dx.doi.org/10.3390/molecules28031491.
Pełny tekst źródła