Gotowa bibliografia na temat „Systems Biology, Synthetic Biology, Metabolic Engineering”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Systems Biology, Synthetic Biology, Metabolic Engineering”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Systems Biology, Synthetic Biology, Metabolic Engineering"
Nielsen, Jens, i Jack T. Pronk. "Metabolic engineering, synthetic biology and systems biology". FEMS Yeast Research 12, nr 2 (4.01.2012): 103. http://dx.doi.org/10.1111/j.1567-1364.2011.00783.x.
Pełny tekst źródłaHe, Fei, Ettore Murabito i Hans V. Westerhoff. "Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering". Journal of The Royal Society Interface 13, nr 117 (kwiecień 2016): 20151046. http://dx.doi.org/10.1098/rsif.2015.1046.
Pełny tekst źródłaChoi, Kyeong Rok, Woo Dae Jang, Dongsoo Yang, Jae Sung Cho, Dahyeon Park i Sang Yup Lee. "Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering". Trends in Biotechnology 37, nr 8 (sierpień 2019): 817–37. http://dx.doi.org/10.1016/j.tibtech.2019.01.003.
Pełny tekst źródłaLee, Hyang-Mi, Phuong Vo i Dokyun Na. "Advancement of Metabolic Engineering Assisted by Synthetic Biology". Catalysts 8, nr 12 (4.12.2018): 619. http://dx.doi.org/10.3390/catal8120619.
Pełny tekst źródłaFong, Stephen S. "Computational approaches to metabolic engineering utilizing systems biology and synthetic biology". Computational and Structural Biotechnology Journal 11, nr 18 (sierpień 2014): 28–34. http://dx.doi.org/10.1016/j.csbj.2014.08.005.
Pełny tekst źródłaKing, Jason R., Steven Edgar, Kangjian Qiao i Gregory Stephanopoulos. "Accessing Nature’s diversity through metabolic engineering and synthetic biology". F1000Research 5 (24.03.2016): 397. http://dx.doi.org/10.12688/f1000research.7311.1.
Pełny tekst źródłaChen, Bor-Sen, i Chia-Chou Wu. "Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering". Cells 2, nr 4 (11.10.2013): 635–88. http://dx.doi.org/10.3390/cells2040635.
Pełny tekst źródłaMcArthur, George H., i Stephen S. Fong. "Toward Engineering Synthetic Microbial Metabolism". Journal of Biomedicine and Biotechnology 2010 (2010): 1–10. http://dx.doi.org/10.1155/2010/459760.
Pełny tekst źródłaMa, Jingbo, Yang Gu, Monireh Marsafari i Peng Xu. "Synthetic biology, systems biology, and metabolic engineering of Yarrowia lipolytica toward a sustainable biorefinery platform". Journal of Industrial Microbiology & Biotechnology 47, nr 9-10 (4.07.2020): 845–62. http://dx.doi.org/10.1007/s10295-020-02290-8.
Pełny tekst źródłaJeong, Yujin, Sang-Hyeok Cho, Hookeun Lee, Hyung-Kyoon Choi, Dong-Myung Kim, Choul-Gyun Lee, Suhyung Cho i Byung-Kwan Cho. "Current Status and Future Strategies to Increase Secondary Metabolite Production from Cyanobacteria". Microorganisms 8, nr 12 (24.11.2020): 1849. http://dx.doi.org/10.3390/microorganisms8121849.
Pełny tekst źródłaRozprawy doktorskie na temat "Systems Biology, Synthetic Biology, Metabolic Engineering"
Boyle, Patrick M. "Network-Scale Engineering: Systems Approaches to Synthetic Biology". Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10298.
Pełny tekst źródłaLibis, Vincent. "New inputs for synthetic biological systems". Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC127/document.
Pełny tekst źródłaSynthetic biologists program DNA with the aim of building biological systems that react under certain conditions in a predefined way. This ability could have impact in several fields, from medicine to industrial fermentation. While the scalability of synthetic biological circuits in terms of signal processing in now almost demonstrated, the variety of input signals for these circuits is limited. Because each application typically requires a circuit to react to case-specific molecules, the lack of input diversity is a major obstacle to the development of new applications. Two axis are developed over the course of this thesis to try to address input-related problems. The main axis consists in a new strategy aiming at systematically and immediately increasing the chemical diversity of inputs for synthetic circuits. Current approaches to expand the number of potential inputs focus on re-engineering sensing systems such as riboswitches or allosteric transcription factors to make them react to previously non-detectable molecules. On the contrary, here we developed a method to transform the non-detectable molecules themselves into molecules for which sensing systems already exist. These chemical transformations are realized in situ by expressing synthetic metabolic pathways in the cell. In order to systematize this strategy, we leveraged computer-aided design to predict ways of detecting new molecules by digging into all known biochemical reactions. We then implemented several predictions in vivo that successfully enabled E. coli to detect new chemicals. Aside from the interest of the method for biotechnological applications, this shows that in addition to transferring matter and energy, metabolism can also play a role in transferring information, raising the question of potential occurrences of this sensing strategy in nature. A second axis introduce a way to exempt simple programs from the need for a chemical input, and explore the use of a biological input instead. In situations where a single timely induction or repression of multiple genes is required, such as in industrial fermentation processes, we propose to replace expensive chemical induction by simultaneous infection of all the members of a growing population of cells with viral particles inputting in real-time all the necessary information for the task at hand. In the context of fermentation, we developed engineered viral particles that can dynamically reprogram the metabolism of a large population of bacteria at the optimal stage of growth and force them to produce value-added chemicals
Triana, Dopico Julián. "Model-based analysis and metabolic design of a cyanobacterium for bio-products synthesis". Doctoral thesis, Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/39351.
Pełny tekst źródłaTriana Dopico, J. (2014). Model-based analysis and metabolic design of a cyanobacterium for bio-products synthesis [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/39351
TESIS
Merrick, Christine. "A synthetic biology approach to metabolic pathway engineering". Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/6383/.
Pełny tekst źródłaTorella, Joseph Peter. "Synthetic biology approaches to bio-based chemical production". Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:13088835.
Pełny tekst źródłaPedersen, Michael. "Modular languages for systems and synthetic biology". Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4602.
Pełny tekst źródłaMartínez-Klimova, Elena. "Synthetic biology approaches to the metabolic engineering of Geobacillus thermoglucosidans for isobutanol production". Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/45409.
Pełny tekst źródłaCampodonico, Alt Miguel Ángel. "Systems biology and chemoinformatics methods for biomining and systems metabolic engineering applications". Tesis, Universidad de Chile, 2014. http://repositorio.uchile.cl/handle/2250/132047.
Pełny tekst źródłaIn the first chapter, this thesis aims to demonstrate the great potential of Constraint-Based Reconstruction and Analysis (COBRA) methods for studying and predicting specific phenotypes in the bacterium Acidithiobacillus ferrooxidans. A genome-scale metabolic reconstruction of Acidithiobacillus ferrooxidans ATCC 23270 (iMC507) is presented and characterized. iMC507 is validated for aerobic chemolithoautotrophic conditions by fixating carbon dioxide and using three different electron donors: ferrous ion, tetrathionate and thiosulfate. Furthermore, the model is utilized for (i) quantitatively studying and analyzing key reactions and pathways involved in the electron transfer metabolism, (ii) describing the central carbon metabolism and (iii) for evaluating the potential to couple the production of extracellular polymeric substances through knock-outs. The second chapter work outlines the effort towards advancing the field of systems metabolic engineering by using COBRA methods in conjunction with chemoinformatic approaches to metabolically engineer the bacterium Escherichia coli. A complete strain design workflow integrating synthetic pathway prediction with growth-coupled designs for the production of non-native compounds in a target organism of interest is outlined. The generated enabling technology is a computational pipeline including chemoinformatics, bioinformatics, constraint-based modeling, and GEMs to aid in the process of metabolic engineering of microbes for industrial bioprocessing purposes. A retrosynthetic based pathway predictor algorithm containing a novel integration with GEMs and reaction promiscuity analysis is developed and demonstrated. Specifically, the production potential of 20 industrially-relevant chemicals in E. coli and feasible designs for production strains generation is outlined. A comprehensive mapping from E. coli s native metabolome to commodity chemicals that are 4 reactions or less away from a natural metabolite is performed. Sets of metabolic interventions, specifically knock-outs and knock-ins that coupled the target chemical production to growth rate were determined. In the third chapter, in order to aid the field of cancer metabolism, potential biomarkers were determined through gain of function oncometabolites predictions. Based on a chemoinformatic approach in conjunction with the global human metabolic network Recon 2, a workflow for predicting potential oncometabolites is constructed. Starting from a list of mutated enzymes genes, described as GoF mutations, a range of promiscuous catalytic activities are inferred. In total 24 chemical substructures of oncometabolites resulting from the GoF analysis are predicted.
McArthur, George Howard IV. "Orthogonal Expression of Metabolic Pathways". VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/3087.
Pełny tekst źródłaHuttanus, Herbert M. "Screening and Engineering Phenotypes using Big Data Systems Biology". Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/102706.
Pełny tekst źródłaDoctor of Philosophy
Książki na temat "Systems Biology, Synthetic Biology, Metabolic Engineering"
Zhao, Huimin, i An-Ping Zeng, red. Synthetic Biology – Metabolic Engineering. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-55318-4.
Pełny tekst źródłaPengcheng, Fu, i Panke Sven, red. Systems biology and synthetic biology. Hoboken, N.J: John Wiley & Sons, 2009.
Znajdź pełny tekst źródłaSelvarajoo, Kumar, red. Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2617-7.
Pełny tekst źródłaWittmann, Christoph. Systems Metabolic Engineering. Dordrecht: Springer Netherlands, 2012.
Znajdź pełny tekst źródłaAlper, Hal S. Systems metabolic engineering: Methods and protocols. New York: Humana Press, 2013.
Znajdź pełny tekst źródłaClay, Sylvia M. Developing Biofuel Bioprocesses Using Systems and Synthetic Biology. New York, NY: Springer New York, 2013.
Znajdź pełny tekst źródłaPray, Leslie A. The science and applications of synthetic and systems biology: Workshop summary. Washington, D.C: National Academies Press, 2011.
Znajdź pełny tekst źródłaMetabolic flux analysis: Methods and protocols. New York: Humana Press, 2014.
Znajdź pełny tekst źródłaChen, Bor-Sen, i Chia-Chou Wu. Systems Biology: An Integrated Platform for Bioinformatics, Systems Synthetic Biology and Systems Metabolic Engineering. Nova Science Publishers, Incorporated, 2014.
Znajdź pełny tekst źródłaZeng, An-Ping, i Huimin Zhao. Synthetic Biology – Metabolic Engineering. Springer, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "Systems Biology, Synthetic Biology, Metabolic Engineering"
Yan, Qiang, i Stephen S. Fong. "Biosensors for Metabolic Engineering". W Systems Biology Application in Synthetic Biology, 53–70. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2809-7_5.
Pełny tekst źródłaBecker, Judith, Gideon Gießelmann, Sarah Lisa Hoffmann i Christoph Wittmann. "Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering". W Synthetic Biology – Metabolic Engineering, 217–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/10_2016_21.
Pełny tekst źródłaSingh, Vijai, Indra Mani i Dharmendra Kumar Chaudhary. "Metabolic Engineering of Microorganisms for Biosynthesis of Antibiotics". W Systems and Synthetic Biology, 341–56. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9514-2_18.
Pełny tekst źródłaRoldão, António, Il-Kwon Kim i Jens Nielsen. "Bridging Omics Technologies with Synthetic Biology in Yeast Industrial Biotechnology". W Systems Metabolic Engineering, 271–327. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4534-6_9.
Pełny tekst źródłaPei, Lei, i Markus Schmidt. "Sustainable Assessment on Using Bacterial Platform to Produce High-Added-Value Products from Berries through Metabolic Engineering". W Systems Biology Application in Synthetic Biology, 71–78. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2809-7_6.
Pełny tekst źródłaNikel, Pablo I. "Systems and Synthetic Biology Approaches for Metabolic Engineering of Pseudomonas putida". W Microbial Models: From Environmental to Industrial Sustainability, 3–22. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2555-6_1.
Pełny tekst źródłaPapoutsakis, Eleftherios T., i Keith V. Alsaker. "Towards a Synthetic Biology of the Stress-Response and the Tolerance Phenotype: Systems Understanding and Engineering of the Clostridium acetobutylicum Stress-Response and Tolerance to Toxic Metabolites". W Systems Metabolic Engineering, 193–219. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4534-6_7.
Pełny tekst źródłaZhu, Qinlong, i Yao-Guang Liu. "TransGene Stacking II Vector System for Plant Metabolic Engineering and Synthetic Biology". W Methods in Molecular Biology, 19–35. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1068-8_2.
Pełny tekst źródłaMarx, Hans, Stefan Pflügl, Diethard Mattanovich i Michael Sauer. "Synthetic Biology Assisting Metabolic Pathway Engineering". W Synthetic Biology, 255–80. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22708-5_7.
Pełny tekst źródłaGuo, Weihua, Jiayuan Sheng i Xueyang Feng. "Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production". W Synthetic Biology – Metabolic Engineering, 265–99. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/10_2017_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Systems Biology, Synthetic Biology, Metabolic Engineering"
Malcata, F. Xavier. "Engineering of microalgae toward biodiesel: Facts and prospects". W 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/jeul5047.
Pełny tekst źródła"Metabolic engineering of corynebacteria to create a producer of L-valine". W Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-317.
Pełny tekst źródłaJensen, P. A., i J. A. Papin. "A scalable systems analysis approach for regulated metabolic networks". W 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5334060.
Pełny tekst źródłaEgan, Paul F., Jonathan Cagan, Christian Schunn i Philip R. LeDuc. "Utilizing Emergent Levels to Facilitate Complex Systems Design: Demonstrated in a Synthetic Biology Domain". W ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12072.
Pełny tekst źródłaBay, Brian, i Mike Bailey. "Pre-Programmed Failure Behavior Using Biology-Inspired Structures". W ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34685.
Pełny tekst źródłaRaporty organizacyjne na temat "Systems Biology, Synthetic Biology, Metabolic Engineering"
Gupta, Shweta. Synthetic Biology: The Gateway to Future Biotechnological Industry. Science Repository OÜ, maj 2021. http://dx.doi.org/10.31487/sr.blog.34.
Pełny tekst źródłaJung, Carina, Karl Indest, Matthew Carr, Richard Lance, Lyndsay Carrigee i Kayla Clark. Properties and detectability of rogue synthetic biology (SynBio) products in complex matrices. Engineer Research and Development Center (U.S.), wrzesień 2022. http://dx.doi.org/10.21079/11681/45345.
Pełny tekst źródła