Spis treści
Gotowa bibliografia na temat „Systèmes de hautes puissances pulsées”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Systèmes de hautes puissances pulsées”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Rozprawy doktorskie na temat "Systèmes de hautes puissances pulsées"
Huet, Dominique. "Mise en oeuvre, modélisation et comparaison de trois systèmes d'amplification de puissance sous vide utilisant des plasmas sous striction magnétique". Phd thesis, Ecole Polytechnique X, 2004. http://pastel.archives-ouvertes.fr/pastel-00000943.
Pełny tekst źródłaDegnon, Mawuena. "Étude des commutateurs semi-conducteurs à ouverture destinés à des applications de puissance pulsée avec des tensions de sortie allant jusqu'à 500 kV". Electronic Thesis or Diss., Pau, 2024. https://theses.hal.science/tel-04685830.
Pełny tekst źródłaIn pulsed power systems, inductive energy storage has an advantage over capacitive storage because of its higher energy density. Exploiting this advantage requires the use of an opening switch to generate the voltage pulse. Moreover, the growing need for reliable pulsed power generators, particularly for industrial applications, strongly supports the adoption of solid-state solutions. The Semiconductor Opening Switch (SOS) diode developed in the 1990s at the Institute of Electrophysics in Russia is an ideal candidate for solid-state opening switching because of its ability to reliably generate high-power pulses at high repetition rates while offering long lifetime and maintenance-free operation. However, the lack of SOS diode manufacturers prevents their widespread use. This thesis is therefore devoted to the study of off-the-shelf (OTS) diodes capable of rapidly switching high currents and generating nanosecond voltages of up to 500 kV. The research includes the investigation of various diode types including rectifier, avalanche, fast recovery, and transient voltage suppression (TVS) diodes as opening switches in comparison with state-of-the-art SOS diodes. Low, medium, and high-energy (25 mJ, 10 J, and 40 J respectively) test benches are developed for the experiments. Their circuits use a single magnetic element – a saturable pulse transformer – resulting in high energy efficiency. Several nanocrystalline cores are examined for optimum transformer performance at an energy of 10 J. Among the diodes investigated at 25 mJ and 10 J energy, the TVS and rectifying diodes stand out particularly promising with nanosecond switching time and generated voltages in the kilovolt range. Finally, a 40 J pulsed power generator prototype (GO-SSOS) based on an OTS opening switch consisting of rectifier diodes is developed. The GO-SSOS achieves a peak power of more than 300 MW with an energy efficiency ranging from 35% to 70% depending on the load value. Across a 1 kΩ load, the voltage pulse generated reaches 500 kV amplitude with a rise time of 36 ns and a pulse width of 80 ns. The system shows high reproducibility at a repetition rate of 60 Hz and is used to demonstrate a corona discharge application. The work proves the reliability of the OTS diodes in SOS mode, revealing no degradation after thousands of pulses. It also offers the prospect of using this technology in industrial applications such as electron-beam sterilization
Souakri, Sonia. "Optimisation des performances d'un procédé industriel d'électrofiltration alimenté par hautes puissances pulsées". Thesis, Pau, 2016. http://www.theses.fr/2016PAUU3028/document.
Pełny tekst źródłaThe fight against air pollution is a major issue in the twenty-first century. The center of Marcouleof CEA develops different waste treatment processes by incineration / vitrification that generatecombustion gases requiring treatment. To do this, the CEA uses the electrostatic precipitation, atechnical waste gas treatment employed for thin particles filtration.This thesis is dedicated to optimizing the performance of an electrofilter supplied by high pulsedpowered. One of the goals is to size and achieve a new emissive electrode adapted to thedevelopment of a new incineration process. This new electrode coupled to its High Voltage (HV)power supply, which electrical parameters were optimized, allowed to obtain maximum filtrationefficiency during operating times in line with industrial applications. The impact of thephysicochemical characteristics of dusts on the filtration efficiency was analyzed.A specific study also focused on the evolution of different discharge conditions that develop inthe electrofilter to identify the phenomena responsible for the process efficiency fall. The intake ofthe emissive electrode and a hybrid generator, combining a continuous background voltagesuperimposed with impulses, has clearly been demonstrated by their effects on back coronainitiation and therefore on the optimal efficiency operation duration
Magne, Isabelle. "Transfert sous vide de Hautes Puissances Pulsées par utilisation du phénomène d'isolement magnétique". Paris 6, 2000. http://www.theses.fr/2000PA066300.
Pełny tekst źródłaAllard, Florian. "Etude de nouvelles architectures modulaires d'alimentations électriques pour les applications de hautes puissances pulsées". Thesis, Pau, 2018. http://www.theses.fr/2018PAUU3005/document.
Pełny tekst źródłaNowadays, to increase the application potential of high power pulsed machines, it is necessary to develop compact modulators able to deliver pulses in the range of several megawatts with duration of up to several hundred microseconds. This improvement requires the development of innovative structures whose purpose is to produce both average power and large peak power. Modulators studied in this thesis are based on the use of various transformers for the generation of very high power pulses. The AGIR project (French acronym for "Architecture for Rectangular High Pulse power generation") is achieved within the framework of a RAPID (Dual Innovation Support Regime) funded by the French Defense (DGA). The project is carried on by a collaboration with EFFITECH, a company specialized in pulsed powers. The goal is to develop two generators for two peak power ranges (up to 10MW for one and 1GW for the other). The first modulator "AGIR1" is based on the association of an AC-DC converter and 12 DC-DC resonant converters allowing the generation of several types of pulses (high current or high voltage) depending on the chosen configuration. The second modulator is based on the development of a four synchronized primary pulse transformer. Each primary is connected to a Blumlein pulse forming line triggered by a three-electrode pressurized spark gap. The synchronization of the four spark gaps is ensured by an innovative pulse generator with low jitter. The main difficulty of the work which was completed in the laboratory relies in the study of the different high-voltage transformers used (resonant or pulse) and the spark gap synchronization system. Each element constituting the system is studied and simulated electrostatically, electromagnetically or electrically before being realized and assembled. Trials punctuate the study to validate the recurrent operation with a suitable heat dissipation system
Bavay, Mathias. "Compression de flux magnétique dans le régime sub-microseconde pour l'obtention de hautes pressions et de rayonnement X intense". Paris 11, 2002. http://www.theses.fr/2002PA112100.
Pełny tekst źródłaIn order to study the feasibility of creating an intense X ray source for France, the Centre d'Études de Gramat (CEG) is investigating several technologies. The Syrinx project is looking at the potential of High Pulse Power technologies for Isentropic Compression Experiments, High Temperatures Hohlraums and Radiation Hardening (X rays between 1 eV and 10 eV radiated by a Z-pinch). Then it is necessary to provide a power amplification stage allowing electrical currents of the order of 10 MA with a hundred nanoseconds rise rime to be delivered to the load. Usually, generators use pulse forming lines or plasma opening switches. Magnetic Flux Compression, another power amplification possibility, is studied in this dissertation. It has enabled the compression of the 100 ns pulse of the Z machine (Sandia National Laboratories) into a 40 ns pulse and the compression of the 1 ms pulse of the ECF generator (CEG) into a 100 ns pulse. This technology bas the advantage of a characteristic implosion time less than a micro second avoiding many of the problems the explosive driven flux compression ran into. This research work consisted initially in finding the right parameters for several codes (circuits codes, plasma codes. . . ) in order to adapt them to the Flux Compression. These numerical tools have then been used to design experiments on Z and ECF. These experiments have reached 5 Mbar with shock and more than 2 Mbar in isentropic compression as well as 110 eV in a hohlraum. Insights gleaned from the interpretation of the shots have been compared to our understanding of the power amplification system and of the loads. Finally, this allows us to improve our numerical tools and to optimize the Flux Compression concept. The work which has been done should lead to the extrapolation of the concept to an X ray generator of the 60 MA class
Fil, Nicolas. "Caractérisation et modélisation des propriétés d’émission électronique sous champ magnétique pour des systèmes RF hautes puissances sujets à l’effet multipactor". Thesis, Toulouse, ISAE, 2017. http://www.theses.fr/2017ESAE0025/document.
Pełny tekst źródłaSpace communication payload as well as magnetic confinement fusion devices, among other applications, are affected by multipactor effect. This undesirable phenomenon can appear inside high frequency (HF) components under vacuum and lead to increase the electron density in the vacuum within the system. Multipactor effect can thus disturb the wave signal and trigger local temperature increases or breakdowns. This PhD research aims to improve our understanding and the prediction of the multipactor effect. The multipactor phenomenon is a resonant process which can appear above a certain RF power threshold. To determine this power threshold, experimental tests or/and simulations are commonly used. We have made a study to evaluate the multipactor power threshold sensitivity to the TEEY. Two particular critical parameters have been found: first cross-over energy and the energies between the first cross-over and the maximum energies. In some situations, the HF components are submitted to DC magnetic fields which might affect the electron emission properties and hence the multipactor power threshold. Current multipactor simulation codes don’t take into account the effect of the magnetic field on the TEEY. A new experimental setup specially designed to investigate this effect was developed during this work. Our new experimental setup and the associated TEEY measurement technique were analysed and optimized thanks to measurements and SPIS simulations. We used the setup to study the influence of magnetic field perpendicular to the sample surface on the TEEY of copper. We have demonstrated that the magnetic field affects the copper TEEY, and hence multipactor power threshold
Avrillaud, Gilles. "Génération et transfert sous vide de hautes puissances pulsées : conception et mise en oeuvre d'un générateur à stockage inductif de 640 kJ d'énergie stockée, associé à un commutateur à ouverture de plasma contrôlé magnétiquement". Palaiseau, Ecole polytechnique, 1998. http://www.theses.fr/1998EPXX0071.
Pełny tekst źródłaMangeant, Christophe. "Génération de fortes pressions magnétiques et mesure des densités de courant associées". Paris 6, 2002. http://www.theses.fr/2002PA066241.
Pełny tekst źródłaBenmamas, Arezki Lotfi. "Valorisation des systèmes d’éclairage à LED en fin de cycle de vie". Thesis, Troyes, 2021. http://www.theses.fr/2021TROY0044.
Pełny tekst źródłaWhile solid-state lighting allows for a significant reduction in electricity consumption, the problem of the end-of-life of the LED-based devices remains. This thesis associated with the RECYLED project consisted in identifying and then developing methods and processes according to the typologies of the devices (lamps, tubes and luminaires) with a view to recovery and reuse of certain elementary components. The objective, through a comprehensive approach, including both technical, economic and environmental aspects, was to achieve a recycling rate of 80%. Three scenarios have been identified for the recycling of LED lamps and tubes, reuse, shredding and disassembly. Studies of waste and marketed products have been carried out in order to characterize the deposit and size the proposed treatment solutions and estimate the overall recovery potential. Regarding the disassembly identified as the blocking point, the technology of pulsed powers based on fragmentation is proposed. With regard to the tubes, purely mechanical solutions have been validated. The proposed methods make it possible to obtain a material recovery rate of 74% for the lamps and 94% for the tubes. These rates are to be linked with the forecasts estimated for 2030 as part of this work, which lead to a maximum annual deposit estimated for LED lamps at 2600 tons and for LED tubes and panels at 1600 tons