Gotowa bibliografia na temat „Syndrome de Shwachman-Diamond”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Syndrome de Shwachman-Diamond”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Syndrome de Shwachman-Diamond"
Tesakov, I. P., E. A. Deordieva, T. G. Brontveyn i A. N. Sveshnikova. "Shwachman–Diamond syndrome: a hematologist's view". Pediatric Hematology/Oncology and Immunopathology 22, nr 3 (3.10.2023): 185–91. http://dx.doi.org/10.24287/1726-1708-2023-22-3-185-191.
Pełny tekst źródłaTan, Huihan, Dequan Su i Zhiqiang Zhuo. "Shwachman-diamond syndrome". Medicine 100, nr 7 (19.02.2021): e24712. http://dx.doi.org/10.1097/md.0000000000024712.
Pełny tekst źródłaSabirova, D. R., A. R. Shakirova, I. I. Ramazanova i N. V. Shakurova. "Shwachman–Diamond Syndrome". Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics) 66, nr 5 (9.12.2021): 223–26. http://dx.doi.org/10.21508/1027-4065-2021-66-5-223-226.
Pełny tekst źródłaShimamura, Akiko. "Shwachman-Diamond Syndrome". Seminars in Hematology 43, nr 3 (lipiec 2006): 178–88. http://dx.doi.org/10.1053/j.seminhematol.2006.04.006.
Pełny tekst źródłaDror, Yigal, i Melvin H. Freedman. "Shwachman-Diamond Syndrome". British Journal of Haematology 118, nr 3 (15.08.2002): 701–13. http://dx.doi.org/10.1046/j.1365-2141.2002.03585.x.
Pełny tekst źródłaMack, David R. "Shwachman-Diamond syndrome". Journal of Pediatrics 141, nr 2 (sierpień 2002): 164–65. http://dx.doi.org/10.1067/mpd.2002.126918.
Pełny tekst źródłaSmith, O. P. "Shwachman-Diamond syndrome". Seminars in Hematology 39, nr 2 (kwiecień 2002): 95–102. http://dx.doi.org/10.1053/shem.2002.31915.
Pełny tekst źródłaDall’Oca, C., M. Bondi, M. Merlini, M. Cipolli, F. Lavini i P. Bartolozzi. "Shwachman–Diamond syndrome". MUSCULOSKELETAL SURGERY 96, nr 2 (27.12.2011): 81–88. http://dx.doi.org/10.1007/s12306-011-0174-z.
Pełny tekst źródłaAndolina, Jeffrey R., Colleen B. Morrison, Alexis A. Thompson, Sonali Chaudhury, A. Kyle Mack, Maria Proytcheva i Seth J. Corey. "Shwachman-Diamond Syndrome". Journal of Pediatric Hematology/Oncology 35, nr 6 (sierpień 2013): 486–89. http://dx.doi.org/10.1097/mph.0b013e3182667c13.
Pełny tekst źródłaMaslak, P. "Shwachman-Diamond Syndrome". ASH Image Bank 2005, nr 0314 (14.03.2005): 101320. http://dx.doi.org/10.1182/ashimagebank-2005-101320.
Pełny tekst źródłaRozprawy doktorskie na temat "Syndrome de Shwachman-Diamond"
ANDRÉ, VALENTINA ISABELLA. "Improving the understanding of Shwachman-Diamond Syndrome". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/29980.
Pełny tekst źródłaBARDELLI, DONATELLA. "SHWACHMAN-DIAMOND SYNDROME: FROM PATHOGENESIS TO DRUG TARGETING". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/170787.
Pełny tekst źródłaShwachman-Diamond Syndrome (SDS) is a rare autosomal recessive disease, characterized by exocrine pancreatic disorder, hematological aberrancies, bone marrow failure and cognitive impairment. In 90% of patients the SBDS gene is found mutated. Similar to other marrow failure syndromes, SDS patients have an increased risk for developing myelodysplastic syndrome and AML. To date, the mechanisms underlying the bone marrow failure in SDS patients are not fully understood. Microenvironment constituents and in particular mesenchymal stromal cells (MSCs) are considered the pivotal organizers for the generation, maintenance and plasticity of the hematopoietic stem cell niche. Recent studies show that specific changes in MSCs may be sufficient to initiate a complex phenotype of disordered homeostasis with similarities to myelodysplasia. We have demonstrated that MSCs obtained from SDS patients were comparable in vitro to HD but gene expression analysis of 16 SDS-MSCs showed that these cells had a specific gene expression signature compared to HD. These results suggest that it is possible that MSCs could be involved in the pathogenesis of the SDS marrow disorders. We increased our patients cohort and investigated whether SDS-MSCs were able to sustain malignant evolution using an innovative scaffold-free in vivo system based on the ex vivo generation of semi-cartilaginous pellets (SCPs) from human MSCs. We obtained SCPs stimulating MSCs for 21 days with a specific differentiating medium and a complete and correct formation of cartilaginous tissues both in HD and SDS samples. These SCPs were transplanted heterotopically into subcutaneous tissue of immunocompromised mice. After 60 days, we sacrificed mice and collected ossicles. We found that in 90% of cases, HD were able to recreate the hematopoietic microenvironment, with the establishment of a complete marrow niche, while none of the transplanted SDS-SCPs was able to recreate the hematopoietic microenvironment, revealing a defect in these differentiating process. The second part of our study was focused on testing a specific drug able to act on nonsense stop codon mutation, one of the most diffuse alterations in SDS patients, linked to risk of developing myelodysplastic syndrome. We successfully obtained restoration of SBDS protein in different cell lineages deriving from patients (Lymphoblastoids, MSCs, mononuclear cells from bone marrow). Protein restoration was also accompanied in some cases with an improvement of functionality. In particular, mononuclear cells from bone marrow treated with drug showed an increase in their ability to form colonies when cultured in a specific assay. This represents a powerful result, due to the potential clinical consequences related to possible therapeutic strategy. Indeed, SDS patients in future could take advantage of this drug to ameliorate their hematological defects and abolish other symptoms.
Menne, Tobias Fritz. "Functional insights into the protein family mutated in Shwachman-Diamond syndrome". Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612892.
Pełny tekst źródłaHoslin, Angela. "Genetic and phenotypic characterisation of a novel Efl1 mouse mutant of Shwachman Diamond syndrome". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:78fdeb8d-ed5c-4bc7-aca2-e71c50df49a0.
Pełny tekst źródłaBertrand, Alexis. "Caractérisation fonctionnelle de mutations somatiques compensatrices d'elF6 dans le contexte du syndrome de Shwachman- Diamond". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL089.
Pełny tekst źródłaShwachman Diamond syndrome (SDS) is a rare genetic ribosomopathy leading to impaired protein synthesis, which causes numerous symptoms including bone marrow failure and neutropenia that can evolve to myelodysplasia syndrome or acute myeloid leukaemia. Biallelic mutations in the SBDS gene are responsible of above 90% of the SDS cases and we recently identified biallelic EFL1 mutations as a novel cause of SDS. SBDS together with EFL1 remove the anti-association factor elF6 from the pre60S ribosomal subunit, allowing its interaction with the 40S subunit to form the mature ribosome 80S. Natural acquisition of somatic genetic events over time participâtes to age-related diseases and cancer development. However, in Mendelian diseases these events can, in rare case, counteract the deleterious effect of the germline mutation and provide a sélective advantage to the somatically modified cells, a phenomenon dubbed Somatic Genetic Rescue (SGR). We recently showed that several somatic genetic events affecting the expression or function of elF6 are frequently detected in blood clones from SDS patients but not in healthy individuals, suggesting a mechanism of SGR. While most of these somatic mutations induce elF6 destabilization or EIF6 haploinsufficiency, one récurrent mutation (N106S) did not affect the expression of elF6 but rather impact its ability to interact with the 60S subunit. In order to further investigate the functional conséquences of ElF6 haploinsufficiency and N106S mutation in a context of SDS, I introduced via CRISPR/Cas9 these mutations in immortalized fibroblastic cell line from SDS patients and control. These original cellular models hâve made it possible to détermine the impact of the N106S mutation on the localisation and function of elF6 and also to clarify the effects of these mutations on several aspects of cellular fitness, in particular ribosome biogenesis, translation rate and cell prolifération. Overall, the development of these cellular models has helped to characterise how the somatic N106S mutation and elF6 haploinsufficiency confer a sélective advantage in cells déficient in SBDS or EFL1
Rigby, Kate. "The behavioral phenotype in Shwachman-diamond syndrome : An exploration of learning, behavioral and psychological functioning". Thesis, Royal Holloway, University of London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.529040.
Pełny tekst źródłaBEDINI, GLORIA. "Shwachman-Diamond Syndrome: an autosomal recessive inherited bone marrow failure disorder with defective angiogenesis and lymphoid lineage impairment". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/304798.
Pełny tekst źródłaShwachman-Diamond Syndrome (SDS, OMIM 260400) is a multi-organ disorder mainly characterized by bone marrow (BM) dysfunctions and exocrine pancreatic insufficiency. SDS patients present also severe haematologic abnormalities, with neutropenia as the most common deficiency. Of note, SDS patients have an increased risk for myelodysplastic syndrome (MDS) and malignant transformation to acute myeloid leukaemia (AML). In the first part of this work, we focused our attention on the in vitro angiogenic capability of SDS-mesenchymal stromal cells (MSCs). Angiogenesis is not only involved in the pathogenesis of solid tumours, but also in haematological malignancies. MSCs can potentiate angiogenesis via direct cell differentiation, cell-cell interaction, and autocrine or paracrine effects. Using both in vitro and in vivo models, our research group recently demonstrated that SDS-MSCs display a marked impairment in their angiogenic potential. Here, we confirm that SDS-derived cells obtained from a cohort of 10 patients show altered angiogenic properties in response to angiogenic stimuli and that the defective in vitro tube formation is associated with TGFβ1/VEGFA signalling abnormalities. Indeed, we show that the expression of several growth factors able to increase the endogenous release of VEGFA and to be induced by TGFβ1 is down-regulated in SDS- vs HD-MSCs. Moreover, by providing the exogenous administration of VEGFA or TGFβ1, we demonstrate that only SDS-MSCs from severely neutropenic patients can restore their angiogenic properties. Finally, our data also show that under angiogenic stimulation, P53 protein levels are 2-fold increase in SDS- vs HD-MSCs, as well as the number of early/late apoptotic cells. Collectively, our results suggest a strong link between TGFβ1 and VEGFA in dictating the altered in vitro angiogenic capability of SDS-MSCs. Moreover, we provide a rational to investigate whether the defective angiogenesis driven by SDS-MSCs could be related to neutropenia. The better comprehension of the molecular mechanisms regulating neutrophil number and functionality may lead to novel strategies for the management of recurrent SDS infections. The second part of our study was focused on the analysis of the molecular mechanisms and signalling pathways responsible of SDS patients neutropenia, and evolution to MDS or AML. Signal transducer and activator of transcription 3 (STAT3) is a key regulator of several cellular processes including neutrophil granulogenesis, leukaemia, and lymphoma malignant transformation. Firstly recognised as an interleukin-6 (IL6)-activated transcription factor, nowadays STAT3 is also considered a direct substrate for the mammalian target of rapamycin (mTOR). Recently, it has been demonstrated that both mTOR and STAT3 pathways are constitutively up-regulated in primary leukocytes and lymphoblastoid cell lines derived from SDS patients. Here, we show that mTOR-STAT3 signalling is markedly up-regulated in several cell subsets belonging to the lymphoid compartment of SDS patients. Furthermore, our data reveal elevated IL6 levels in cellular supernatants obtained from lymphoblasts, bone marrow mononuclear and mesenchymal stromal cells, and plasma samples obtained from a cohort of 10 patients. Of note, everolimus-mediated inhibition of mTOR signalling was associated with the basal state of phosphorylated STAT3. Finally, inhibition of mTOR-STAT3 pathway leads to normalization of IL6 expression in SDS cells. Altogether, our data strengthen the hypothesis that SDS affects both lymphoid and myeloid blood compartment and suggest everolimus as a potential therapeutic agent to reduce excessive mTOR-STAT3 activation in SDS [Vella A., et al. 2020]. The discovery of new altered molecular pathways underlying SDS pathophysiology could lead to the identification of new therapeutic targets for the correction of SDS-related haematological defects and the prevention of leukemic evolution.
Ho, William. "Characterization of oral diseases in Shwachman-Diamond syndrome". 2005. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=370197&T=F.
Pełny tekst źródłaEllenor, Darlene Wendy. "Attempts to identify interactors of the Shwachman-Diamond syndrome protein". 2005. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=370359&T=F.
Pełny tekst źródłaSen, Saswati. "Mechanisms of Erythropoietic Failure in Shwachman Diamond Syndrome Caused by Loss of the Ribosome-related Protein, SBDS". Thesis, 2009. http://hdl.handle.net/1807/18860.
Pełny tekst źródłaKsiążki na temat "Syndrome de Shwachman-Diamond"
Ho, William. Characterization of oral diseases in Shwachman-Diamond syndrome. 2005.
Znajdź pełny tekst źródłaEllenor, Darlene Wendy. Attempts to identify interactors of the Shwachman-Diamond syndrome protein. 2005.
Znajdź pełny tekst źródłaBoocock, Graeme Roy Brooke. Identification and characterisation of the shwachman-diamond syndrome gene and its orthologues. 2006.
Znajdź pełny tekst źródłaEditorial Staff of Annals of the New York Academy of Sciences. Annals Meeting Reports - Research Advances in Bipolar Disorder and Shwachman-Diamond Syndrome, Volume 1242. Wiley & Sons, Limited, John, 2012.
Znajdź pełny tekst źródłaPopovic, Maja. Genetic and physical mapping of the Shwachman-Diamond syndrome locus at the pericentromeric region of chromosome 7. 2003.
Znajdź pełny tekst źródłaCzęści książek na temat "Syndrome de Shwachman-Diamond"
Chong-Neto, Herberto Jose, i Debora Carla Chong-Silva. "Shwachman-Diamond Syndrome". W Encyclopedia of Medical Immunology, 593–96. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4614-8678-7_147.
Pełny tekst źródłaMyers, Kasiani C., i Akiko Shimamura. "Shwachman-Diamond Syndrome". W Pediatric Oncology, 153–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-61421-2_8.
Pełny tekst źródłaChong-Neto, Herberto Jose, i Debora Carla Chong-Silva. "Shwachman-Diamond Syndrome". W Encyclopedia of Medical Immunology, 1–5. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-9209-2_147-1.
Pełny tekst źródłaLeung, Alexander K. C., Cham Pion Kao, Andrew L. Wong, Alexander K. C. Leung, Thomas Kolter, Ute Schepers, Konrad Sandhoff i in. "Shwachman Diamond Syndrome". W Encyclopedia of Molecular Mechanisms of Disease, 1931–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_1589.
Pełny tekst źródłaFasth, Anders. "Shwachman-Diamond Syndrome (SDS)". W Genetic Syndromes, 1–4. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-319-66816-1_95-1.
Pełny tekst źródłaCipolli, M. "Shwachman-Diamond Syndrome: Clinical Phenotypes". W Genetic Disorders of the Exocrine Pancreas, 134–39. Basel: KARGER, 2002. http://dx.doi.org/10.1159/000070354.
Pełny tekst źródłaHall, Christine M., Amaka C. Offiah, Francesca Forzano, Mario Lituania, Gen Nishimura i Valérie Cormier-Daire. "Metaphyseal Dysplasia with Pancreatic Insufficiency and Cyclical Neutropenia (Shwachman-Bodian-Diamond Syndrome, SBDS), SBDS-, EFL1-, DNAJC21- and SRP54-Related". W Fetal and Perinatal Skeletal Dysplasias, 229–30. Wyd. 2. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003166948-42.
Pełny tekst źródła"Shwachman-Diamond Syndrome (Shwachman-Bodian-Diamond syndrome, 7q11)". W Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 1806. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_15571.
Pełny tekst źródłaMACK, DAVID. "Shwachman-Diamond Syndrome". W Pediatric Gastroenterology, 329–34. Elsevier, 2008. http://dx.doi.org/10.1016/b978-0-323-03280-3.50046-6.
Pełny tekst źródła"Shwachman-Diamond Syndrome". W Diagnostic Pathology: Blood and Bone Marrow, 256–59. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-323-39254-9.50055-6.
Pełny tekst źródłaStreszczenia konferencji na temat "Syndrome de Shwachman-Diamond"
Osetek-Müller, K., A. Bellon, A. Wagner, R. Suttner, D. Shakeshaft, W. Würfel, D. Wahl, H.-G. Klein i I. Rost. "Präimplantationsdiagnostik zum Ausschluss von Shwachman-Bodian-Diamond-Syndrom: Etablierung eines Allel-spezifischen Multiplex-PCR basierten Assays für das SBDS-Gen". W 64. Kongress der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe e. V. Georg Thieme Verlag, 2022. http://dx.doi.org/10.1055/s-0042-1756977.
Pełny tekst źródłaRaporty organizacyjne na temat "Syndrome de Shwachman-Diamond"
Novina, Carl. Dysregulated microRNA Activity in Shwachman-Diamond Syndrome. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2015. http://dx.doi.org/10.21236/ada624270.
Pełny tekst źródłaRevskoy, Sergei. Identification of Genetic Co-Modifiers in Shwachman-Diamond Syndrome. Fort Belvoir, VA: Defense Technical Information Center, marzec 2013. http://dx.doi.org/10.21236/ada592341.
Pełny tekst źródłaRevskoy, Sergei. Identification of Genetic Co-Modifiers in Shwachman-Diamond Syndrome. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2012. http://dx.doi.org/10.21236/ada592442.
Pełny tekst źródła