Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Symmetrized bidisk.

Artykuły w czasopismach na temat „Symmetrized bidisk”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 34 najlepszych artykułów w czasopismach naukowych na temat „Symmetrized bidisk”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Bhattacharyya, Tirthankar, i Haripada Sau. "Interpolating sequences and the Toeplitz--Corona theorem on the symmetrized bidisk". Journal of Operator Theory 87, nr 1 (15.03.2022): 435–59. http://dx.doi.org/10.7900/jot.2020oct07.2311.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Bhattacharyya, Tirthankar, i Haripada Sau. "Holomorphic functions on the symmetrized bidisk – Realization, interpolation and extension". Journal of Functional Analysis 274, nr 2 (styczeń 2018): 504–24. http://dx.doi.org/10.1016/j.jfa.2017.09.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Agler, J., i N. J. Young. "Operators having the symmetrized bidisc as a spectral set". Proceedings of the Edinburgh Mathematical Society 43, nr 1 (luty 2000): 195–210. http://dx.doi.org/10.1017/s0013091500020812.

Pełny tekst źródła
Streszczenie:
AbstractWe characterize those commuting pairs of operators on Hubert space that have the symmetrized bidisc as a spectral set in terms of the positivity of a hermitian operator pencil (without any assumption about the joint spectrum of the pair). Further equivalent conditions are that the pair has a normal dilation to the distinguished boundary of the symmetrized bidisc, and that the pair has the symmetrized bidisc as a complete spectral set. A consequence is that every contractive representation of the operator algebra A(Γ) of continuous functions on the symmetrized bidisc analytic in the interior is completely contractive. The proofs depend on a polynomial identity that is derived with the aid of a realization formula for doubly symmetric hereditary polynomials, which are positive on commuting pairs of contractions.
Style APA, Harvard, Vancouver, ISO itp.
4

Sarkar, Jaydeb. "Operator Theory on Symmetrized Bidisc". Indiana University Mathematics Journal 64, nr 3 (2015): 847–73. http://dx.doi.org/10.1512/iumj.2015.64.5541.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Trybuła, Maria. "Invariant metrics on the symmetrized bidisc". Complex Variables and Elliptic Equations 60, nr 4 (28.08.2014): 559–65. http://dx.doi.org/10.1080/17476933.2014.948543.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

COSTARA, C. "THE SYMMETRIZED BIDISC AND LEMPERT'S THEOREM". Bulletin of the London Mathematical Society 36, nr 05 (24.08.2004): 656–62. http://dx.doi.org/10.1112/s0024609304003200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Pflug, Peter, i Włodzimierz Zwonek. "Exhausting domains of the symmetrized bidisc". Arkiv för Matematik 50, nr 2 (październik 2012): 397–402. http://dx.doi.org/10.1007/s11512-011-0153-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Bhattacharyya, Tirthankar, Anindya Biswas i Anwoy Maitra. "On the geometry of the symmetrized bidisc". Indiana University Mathematics Journal 71, nr 2 (2022): 685–713. http://dx.doi.org/10.1512/iumj.2022.71.8896.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Agler, Jim, Zinaida A. Lykova i N. J. Young. "Extremal holomorphic maps and the symmetrized bidisc". Proceedings of the London Mathematical Society 106, nr 4 (26.10.2012): 781–818. http://dx.doi.org/10.1112/plms/pds049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Agler, J., i N. J. Young. "A Schwarz Lemma for the Symmetrized Bidisc". Bulletin of the London Mathematical Society 33, nr 2 (marzec 2001): 175–86. http://dx.doi.org/10.1112/blms/33.2.175.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Agler, J., i N. J. Young. "The hyperbolic geometry of the symmetrized bidisc". Journal of Geometric Analysis 14, nr 3 (wrzesień 2004): 375–403. http://dx.doi.org/10.1007/bf02922097.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

AGLER, J., i N. J. YOUNG. "THE COMPLEX GEODESICS OF THE SYMMETRIZED BIDISC". International Journal of Mathematics 17, nr 04 (kwiecień 2006): 375–91. http://dx.doi.org/10.1142/s0129167x06003564.

Pełny tekst źródła
Streszczenie:
We give formulae for all complex geodesics of the symmetrized bidisc G. There are two classes of geodesics: flat ones, indexed by the unit disc, and geodesics of degree 2, naturally indexed by G itself. The flat geodesics foliate G, and there is a unique geodesic through every pair of points of G. We also obtain a trichotomy result for left inverses of complex geodesics.
Style APA, Harvard, Vancouver, ISO itp.
13

Agler, Jim, i N. J. Young. "Realization of functions on the symmetrized bidisc". Journal of Mathematical Analysis and Applications 453, nr 1 (wrzesień 2017): 227–40. http://dx.doi.org/10.1016/j.jmaa.2017.04.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Agler, Jim, Zinaida Lykova i N. J. Young. "A geometric characterization of the symmetrized bidisc". Journal of Mathematical Analysis and Applications 473, nr 2 (maj 2019): 1377–413. http://dx.doi.org/10.1016/j.jmaa.2019.01.027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Edigarian, Armen. "Proper holomorphic self-mappings of the symmetrized bidisc". Annales Polonici Mathematici 84, nr 2 (2004): 181–84. http://dx.doi.org/10.4064/ap84-2-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Frosini, Chiara, i Fabio Vlacci. "A Julia's Lemma for the symmetrized bidisc 𝔾2". Complex Variables and Elliptic Equations 57, nr 10 (październik 2012): 1121–34. http://dx.doi.org/10.1080/17476933.2010.534789.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Agler, Jim, Zinaida A. Lykova i N. J. Young. "3-Extremal Holomorphic Maps and the Symmetrized Bidisc". Journal of Geometric Analysis 25, nr 3 (15.07.2014): 2060–102. http://dx.doi.org/10.1007/s12220-014-9504-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Nikolov, Nikolai, Peter Pflug i W{\l}odzimierz Zwonek. "An example of a bounded $\mathsf C$-convex domain which is not biholomorphic to a convex domain". MATHEMATICA SCANDINAVICA 102, nr 1 (1.03.2008): 149. http://dx.doi.org/10.7146/math.scand.a-15056.

Pełny tekst źródła
Streszczenie:
We show that the symmetrized bidisc is a $\mathsf C$-convex domain. This provides an example of a bounded $\mathsf C$-convex domain which cannot be exhausted by domains biholomorphic to convex domains.
Style APA, Harvard, Vancouver, ISO itp.
19

PFLUG, PETER, i WLODZIMIERZ ZWONEK. "DESCRIPTION OF ALL COMPLEX GEODESICS IN THE SYMMETRIZED BIDISC". Bulletin of the London Mathematical Society 37, nr 04 (sierpień 2005): 575–84. http://dx.doi.org/10.1112/s0024609305004418.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Pal, Sourav, i Orr Moshe Shalit. "Spectral sets and distinguished varieties in the symmetrized bidisc". Journal of Functional Analysis 266, nr 9 (maj 2014): 5779–800. http://dx.doi.org/10.1016/j.jfa.2013.12.022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Pal, Sourav, i Samriddho Roy. "A generalized Schwarz lemma for two domains related to μ-synthesis". Complex Manifolds 5, nr 1 (2.02.2018): 1–8. http://dx.doi.org/10.1515/coma-2018-0001.

Pełny tekst źródła
Streszczenie:
AbstractWe present a set of necessary and sufficient conditions that provides a Schwarz lemma for the tetrablock E. As an application of this result, we obtain a Schwarz lemma for the symmetrized bidisc G2. In either case, our results generalize all previous results in this direction for E and G2.
Style APA, Harvard, Vancouver, ISO itp.
22

Agler, Jim, Zinaida Lykova i N. J. Young. "Intrinsic Directions, Orthogonality, and Distinguished Geodesics in the Symmetrized Bidisc". Journal of Geometric Analysis 31, nr 8 (19.01.2021): 8202–37. http://dx.doi.org/10.1007/s12220-020-00582-0.

Pełny tekst źródła
Streszczenie:
AbstractThe symmetrized bidisc $$\begin{aligned} G {\mathop {=}\limits ^\mathrm{{def}}}\{(z+w,zw):|z|<1,\quad |w|<1\}, \end{aligned}$$ G = def { ( z + w , z w ) : | z | < 1 , | w | < 1 } , under the Carathéodory metric, is a complex Finsler space of cohomogeneity 1 in which the geodesics, both real and complex, enjoy a rich geometry. As a Finsler manifold, G does not admit a natural notion of angle, but we nevertheless show that there is a notion of orthogonality. The complex tangent bundle TG splits naturally into the direct sum of two line bundles, which we call the sharp and flat bundles, and which are geometrically defined and therefore covariant under automorphisms of G. Through every point of G, there is a unique complex geodesic of G in the flat direction, having the form $$\begin{aligned} F^\beta {\mathop {=}\limits ^\mathrm{{def}}}\{(\beta +{\bar{\beta }} z,z)\ : z\in \mathbb {D}\} \end{aligned}$$ F β = def { ( β + β ¯ z , z ) : z ∈ D } for some $$\beta \in \mathbb {D}$$ β ∈ D , and called a flat geodesic. We say that a complex geodesic Dis orthogonal to a flat geodesic F if D meets F at a point $$\lambda $$ λ and the complex tangent space $$T_\lambda D$$ T λ D at $$\lambda $$ λ is in the sharp direction at $$\lambda $$ λ . We prove that a geodesic D has the closest point property with respect to a flat geodesic F if and only if D is orthogonal to F in the above sense. Moreover, G is foliated by the geodesics in G that are orthogonal to a fixed flat geodesic F.
Style APA, Harvard, Vancouver, ISO itp.
23

Tu, Zhenhan, i Shuo Zhang. "The Schwarz lemma at the boundary of the symmetrized bidisc". Journal of Mathematical Analysis and Applications 459, nr 1 (marzec 2018): 182–202. http://dx.doi.org/10.1016/j.jmaa.2017.10.061.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Agler, Jim, Zinaida Lykova i Nicholas Young. "Geodesics, Retracts, and the Norm-Preserving Extension Property in the Symmetrized Bidisc". Memoirs of the American Mathematical Society 258, nr 1242 (marzec 2019): 0. http://dx.doi.org/10.1090/memo/1242.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Kosiński, Łukasz, i Włodzimierz Zwonek. "Nevanlinna–Pick Problem and Uniqueness of Left Inverses in Convex Domains, Symmetrized Bidisc and Tetrablock". Journal of Geometric Analysis 26, nr 3 (10.04.2015): 1863–90. http://dx.doi.org/10.1007/s12220-015-9611-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Chen, Liwei, Muzhi Jin i Yuan Yuan. "Bergman Projection on the Symmetrized Bidisk". Journal of Geometric Analysis 33, nr 7 (20.04.2023). http://dx.doi.org/10.1007/s12220-023-01263-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

DAS, B. KRISHNA, P. KUMAR i H. SAU. "DETERMINING SETS FOR HOLOMORPHIC FUNCTIONS ON THE SYMMETRIZED BIDISK". Canadian Mathematical Bulletin, 31.01.2023, 1–13. http://dx.doi.org/10.4153/s0008439523000103.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Bhattacharyya, Tirthankar, B. Krishna Das i Haripada Sau. "Toeplitz Operators on the Symmetrized Bidisc". International Mathematics Research Notices, 11.01.2020. http://dx.doi.org/10.1093/imrn/rnz333.

Pełny tekst źródła
Streszczenie:
Abstract The symmetrized bidisc has been a rich field of holomorphic function theory and operator theory. A certain well-known reproducing kernel Hilbert space of holomorphic functions on the symmetrized bidisc resembles the Hardy space of the unit disc in several aspects. This space is known as the Hardy space of the symmetrized bidisc. We introduce the study of those operators on the Hardy space of the symmetrized bidisc that are analogous to Toeplitz operators on the Hardy space of the unit disc. More explicitly, we first study multiplication operators on a bigger space (an $L^2$-space) and then study compressions of these multiplication operators to the Hardy space of the symmetrized bidisc and prove the following major results. (1) Theorem I analyzes the Hardy space of the symmetrized bidisc, not just as a Hilbert space, but as a Hilbert module over the polynomial ring and finds three isomorphic copies of it as $\mathbb D^2$-contractive Hilbert modules. (2) Theorem II provides an algebraic, Brown and Halmos-type characterization of Toeplitz operators. (3) Theorem III gives several characterizations of an analytic Toeplitz operator. (4) Theorem IV characterizes asymptotic Toeplitz operators. (5) Theorem V is a commutant lifting theorem. (6) Theorem VI yields an algebraic characterization of dual Toeplitz operators. Every section from Section 2 to Section 7 contains a theorem each, the main result of that section.
Style APA, Harvard, Vancouver, ISO itp.
29

Jarnicki, Marek, i Peter Pflug. "On automorphisms of the symmetrized bidisc". Archiv der Mathematik 83, nr 3 (wrzesień 2004). http://dx.doi.org/10.1007/s00013-004-1049-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Bhattacharyya, Tirthankar, B. Krishna Das i Haripada Sau. "Addendum to: Toeplitz Operators on the Symmetrized Bidisc". International Mathematics Research Notices, 13.09.2021. http://dx.doi.org/10.1093/imrn/rnab252.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Cho, Gunhee, i Yuan Yuan. "Bergman metric on the symmetrized bidisc and its consequences". International Journal of Mathematics, 24.08.2022. http://dx.doi.org/10.1142/s0129167x22500719.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Agler, J., Z. Lykova i N. Young. "Nonuniqueness of Carathéodory Extremal Functions on the Symmetrized Bidisc". Analysis Mathematica, 20.04.2022. http://dx.doi.org/10.1007/s10476-022-0138-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Hamada, Hidetaka, i Hiroumi Segawa. "AN ELEMENTARY PROOF OF A SCHWARZ LEMMA FOR THE SYMMETRIZED BIDISC". Demonstratio Mathematica 36, nr 2 (1.04.2003). http://dx.doi.org/10.1515/dema-2003-0208.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Alshehri, Nujood M., i Zinaida A. Lykova. "A Schwarz Lemma for the Pentablock". Journal of Geometric Analysis 33, nr 2 (19.12.2022). http://dx.doi.org/10.1007/s12220-022-01107-7.

Pełny tekst źródła
Streszczenie:
AbstractIn this paper, we prove a Schwarz lemma for the pentablock. The pentablock $$\mathcal {P}$$ P is defined by $$\begin{aligned} \mathcal {P}=\{(a_{21}, {\text {tr}}A, \det A) : A=[a_{ij}]_{i,j=1}^2 \in \mathbb {B}^{2\times 2}\} \end{aligned}$$ P = { ( a 21 , tr A , det A ) : A = [ a ij ] i , j = 1 2 ∈ B 2 × 2 } where $$\mathbb {B}^{2\times 2}$$ B 2 × 2 denotes the open unit ball in the space of $$2\times 2$$ 2 × 2 complex matrices. The pentablock is a bounded non-convex domain in $$\mathbb {C}^3$$ C 3 which arises naturally in connection with a certain problem of $$\mu $$ μ -synthesis. We develop a concrete structure theory for the rational maps from the unit disc $$\mathbb {D}$$ D to the closed pentablock $$\overline{\mathcal {P}}$$ P ¯ that map the unit circle $$\mathbb {T}$$ T to the distinguished boundary $$b\overline{\mathcal {P}}$$ b P ¯ of $$\overline{\mathcal {P}}$$ P ¯ . Such maps are called rational $${\overline{\mathcal {P}}}$$ P ¯ -inner functions. We give relations between $${\overline{\mathcal {P}}}$$ P ¯ -inner functions and inner functions from $$\mathbb {D}$$ D to the symmetrized bidisc. We describe the construction of rational $${\overline{\mathcal {P}}}$$ P ¯ -inner functions $$x = (a, s, p) : \mathbb {D} \rightarrow \overline{\mathcal {P}}$$ x = ( a , s , p ) : D → P ¯ of prescribed degree from the zeroes of a, s and $$s^2-4p$$ s 2 - 4 p . The proof of this theorem is constructive: it gives an algorithm for the construction of a family of such functions x subject to the computation of Fejér–Riesz factorizations of certain non-negative trigonometric functions on the circle. We use properties and the construction of rational $${\overline{\mathcal {P}}}$$ P ¯ -inner functions to prove a Schwarz lemma for the pentablock.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii