Gotowa bibliografia na temat „Symmetrized bidisk”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Symmetrized bidisk”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Symmetrized bidisk"
Bhattacharyya, Tirthankar, i Haripada Sau. "Interpolating sequences and the Toeplitz--Corona theorem on the symmetrized bidisk". Journal of Operator Theory 87, nr 1 (15.03.2022): 435–59. http://dx.doi.org/10.7900/jot.2020oct07.2311.
Pełny tekst źródłaBhattacharyya, Tirthankar, i Haripada Sau. "Holomorphic functions on the symmetrized bidisk – Realization, interpolation and extension". Journal of Functional Analysis 274, nr 2 (styczeń 2018): 504–24. http://dx.doi.org/10.1016/j.jfa.2017.09.013.
Pełny tekst źródłaAgler, J., i N. J. Young. "Operators having the symmetrized bidisc as a spectral set". Proceedings of the Edinburgh Mathematical Society 43, nr 1 (luty 2000): 195–210. http://dx.doi.org/10.1017/s0013091500020812.
Pełny tekst źródłaSarkar, Jaydeb. "Operator Theory on Symmetrized Bidisc". Indiana University Mathematics Journal 64, nr 3 (2015): 847–73. http://dx.doi.org/10.1512/iumj.2015.64.5541.
Pełny tekst źródłaTrybuła, Maria. "Invariant metrics on the symmetrized bidisc". Complex Variables and Elliptic Equations 60, nr 4 (28.08.2014): 559–65. http://dx.doi.org/10.1080/17476933.2014.948543.
Pełny tekst źródłaCOSTARA, C. "THE SYMMETRIZED BIDISC AND LEMPERT'S THEOREM". Bulletin of the London Mathematical Society 36, nr 05 (24.08.2004): 656–62. http://dx.doi.org/10.1112/s0024609304003200.
Pełny tekst źródłaPflug, Peter, i Włodzimierz Zwonek. "Exhausting domains of the symmetrized bidisc". Arkiv för Matematik 50, nr 2 (październik 2012): 397–402. http://dx.doi.org/10.1007/s11512-011-0153-5.
Pełny tekst źródłaBhattacharyya, Tirthankar, Anindya Biswas i Anwoy Maitra. "On the geometry of the symmetrized bidisc". Indiana University Mathematics Journal 71, nr 2 (2022): 685–713. http://dx.doi.org/10.1512/iumj.2022.71.8896.
Pełny tekst źródłaAgler, Jim, Zinaida A. Lykova i N. J. Young. "Extremal holomorphic maps and the symmetrized bidisc". Proceedings of the London Mathematical Society 106, nr 4 (26.10.2012): 781–818. http://dx.doi.org/10.1112/plms/pds049.
Pełny tekst źródłaAgler, J., i N. J. Young. "A Schwarz Lemma for the Symmetrized Bidisc". Bulletin of the London Mathematical Society 33, nr 2 (marzec 2001): 175–86. http://dx.doi.org/10.1112/blms/33.2.175.
Pełny tekst źródłaRozprawy doktorskie na temat "Symmetrized bidisk"
Lin, Cheng-Tsai, i 林成財. "Schwarz Lemma on Symmetrized Bidisc". Thesis, 2001. http://ndltd.ncl.edu.tw/handle/05462082649779495998.
Pełny tekst źródła東海大學
數學系
89
Let $\Gamma$ denote the set of symmetrized bidisc. In this thesis we discuss the Schwarz lemma on $\Gamma$ also known as the special flat problem on $\Gamma$ as: Given $\alpha_{2}\in\mathbb{D},~\alpha_{2}\neq0~$ and $(s_{2},p_{2})\in\Gamma$, find an analytic function $\varphi:\mathbb{D}\rightarrow\Gamma$with $\varphi(\lambda)=(s(\lambda),p(\lambda))$ satisfies $$\varphi(0)=(0,0),~\varphi(\alpha_{2})=(s_{2},p_{2})$$ Based on the equality of Carath\'odory and Kobayashi distances, and the Schur's theorem, we construct an analytic function $\varphi$ to solve this problem. Keywords: Spectral Nevanlinna-Pick interpolation, Poincar\'{e} distance, Carath\'odory distance, Kobayashi distance, Symmetrized bidisc, Schwarz lemma.
Lin, Tien-De, i 林天得. "Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc". Thesis, 2001. http://ndltd.ncl.edu.tw/handle/94495204389019542431.
Pełny tekst źródła東海大學
數學系
89
Consider symmetrized bidisc $\Gamma_{2}$:% $$\Gamma_{2}\triangleq \{(s,p):\lambda^{2}-s\lambda+p=0,~\lambda \in \mathbb{C},~|\lambda|\leq1\}$$% and spectral Nevanlinna-Pick Interpolation non-flat problem on it as:\\ % Given $\alpha_{1},~\alpha_{2} \in \mathbb{D},~(s_{1},0),~(s_{2},0) % \in {\rm Int}~\Gamma_{2} $,% $\varphi : \mathbb{D} \longrightarrow {\rm Int}~\Gamma_{2}$,is analytic,% ~such that~$\varphi(\alpha_{1}) = (s_{1},0)$,$\varphi(\alpha_{2}) = (s_{2},~0)$,% ~by the equality of Carath$\acute{e}$odory and Kobayashi distances,% ~and Schur theorem, ~we can find $\varphi$ that we want.
Lin, Chun-Ming, i 林俊銘. "Realization of Spectral Nevanlinna-Pick Interpolation Problem on Symmetrized Bidisc". Thesis, 2003. http://ndltd.ncl.edu.tw/handle/40559244736778567050.
Pełny tekst źródła東海大學
數學系
91
In this paper we discuss the two-point spectral Nevanlinna-Pick interpolation problem for 2 2 general case by using the previous results of T.D.Lin[13], C.T.Lin[8] and Yeh[9]: Given distinct , , , ,find an analytic function such that and it's realization.
Sau, Haripada. "Operator Theory on Symmetrized Bidisc and Tetrablock-some Explicit Constructions". Thesis, 2015. http://etd.iisc.ernet.in/2005/3887.
Pełny tekst źródłaChen, Chun Ming, i 陳駿銘. "The Graphics of Symmetrized Bidiscs and Spectral Interpolating Functions". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/85112132699826651919.
Pełny tekst źródła東海大學
數學系
98
The symmetrrized bidisc is defined as the set of two coefficients of a quadratic equation with its roots located inside the unit disc. In this thesis, a matlab-based GUI is developed to the graphs of the symmetrized bidisc and associated spectral interpolating functions. Since the symmetrized bidisc belongs to C^2, its 3D projection is plotted as the real or imaginary part of one variable is fixed. By the way, the graph of the symmetrized bidisc is also shown when the radius of the root's location changes. Furthermorre, two kinds of approaches are used to construct the spectral interoplating function defined on the symmetrized bidisc are introduced and their graphs are depicted as well. Once the interpolating function is computed, we demo how to construct the interpolation function to solve the two-by-two spectral Nevanlinna-Pick problem. Keywords: unit disc, symmetrized bidisc, quadratic equation, matlab, GUI, spectral Nevanlinna- Pick interpolation problemn
Książki na temat "Symmetrized bidisk"
Young, Nicholas, Jim Agler i Zinaida Lykova. Geodesics, Retracts, and the Norm-Preserving Extension Property in the Symmetrized Bidisc. American Mathematical Society, 2019.
Znajdź pełny tekst źródłaCzęści książek na temat "Symmetrized bidisk"
Agler, Jim, Zinaida A. Lykova i N. J. Young. "Carathéodory extremal functions on the symmetrized bidisc". W Operator Theory, Analysis and the State Space Approach, 1–21. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04269-1_1.
Pełny tekst źródłaAgler, J., F. B. Yeh i N. J. Young. "Realization of Functions into the Symmetrised Bidisc". W Reproducing Kernel Spaces and Applications, 1–37. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8077-0_1.
Pełny tekst źródła"Model Theory on the Symmetrized Bidisc". W Operator Analysis, 169–88. Cambridge University Press, 2020. http://dx.doi.org/10.1017/9781108751292.008.
Pełny tekst źródła