Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Symmetric varieties.

Artykuły w czasopismach na temat „Symmetric varieties”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Symmetric varieties”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Bifet, Emili. "On complete symmetric varieties". Advances in Mathematics 80, nr 2 (kwiecień 1990): 225–49. http://dx.doi.org/10.1016/0001-8708(90)90026-j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Guay, Nicolas. "Embeddings of symmetric varieties". Transformation Groups 6, nr 4 (grudzień 2001): 333–52. http://dx.doi.org/10.1007/bf01237251.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

De Concini, C., i T. A. Springer. "Compactification of symmetric varieties". Transformation Groups 4, nr 2-3 (czerwiec 1999): 273–300. http://dx.doi.org/10.1007/bf01237359.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Hong, Jiuzu, i Korkeat Korkeathikhun. "Nilpotent varieties in symmetric spaces and twisted affine Schubert varieties". Representation Theory of the American Mathematical Society 26, nr 20 (2.06.2022): 585–615. http://dx.doi.org/10.1090/ert/613.

Pełny tekst źródła
Streszczenie:
We relate the geometry of Schubert varieties in twisted affine Grassmannian and the nilpotent varieties in symmetric spaces. This extends some results of Achar–Henderson in the twisted setting. We also get some applications to the geometry of the order 2 nilpotent varieties in certain classical symmetric spaces.
Style APA, Harvard, Vancouver, ISO itp.
5

Can, Mahir Bilen, Roger Howe i Lex Renner. "Monoid embeddings of symmetric varieties". Colloquium Mathematicum 157, nr 1 (2019): 17–33. http://dx.doi.org/10.4064/cm7644-7-2018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Li, Yiqiang. "Quiver varieties and symmetric pairs". Representation Theory of the American Mathematical Society 23, nr 1 (17.01.2019): 1–56. http://dx.doi.org/10.1090/ert/522.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Uzawa, Tohru. "Symmetric varieties over arbitrary fields". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 333, nr 9 (listopad 2001): 833–38. http://dx.doi.org/10.1016/s0764-4442(01)02152-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Cuntz, M., Y. Ren i G. Trautmann. "Strongly symmetric smooth toric varieties". Kyoto Journal of Mathematics 52, nr 3 (2012): 597–620. http://dx.doi.org/10.1215/21562261-1625208.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Pragacz, P. "Determinantal varieties and symmetric polynomials". Functional Analysis and Its Applications 21, nr 3 (lipiec 1987): 249–50. http://dx.doi.org/10.1007/bf02577147.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Aramova, Annetta G. "Symmetric products of Gorenstein varieties". Journal of Algebra 146, nr 2 (marzec 1992): 482–96. http://dx.doi.org/10.1016/0021-8693(92)90079-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Springer, T. A. "Decompositions related to symmetric varieties". Journal of Algebra 329, nr 1 (marzec 2011): 260–73. http://dx.doi.org/10.1016/j.jalgebra.2010.03.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Kiritchenko, Valentina, i Amalendu Krishna. "Equivariant cobordism of flag varieties and of symmetric varieties". Transformation Groups 18, nr 2 (5.05.2013): 391–413. http://dx.doi.org/10.1007/s00031-013-9223-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Lee, Jae-Hyouk, Kyeong-Dong Park i Sungmin Yoo. "Kähler–Einstein Metrics on Smooth Fano Symmetric Varieties with Picard Number One". Mathematics 9, nr 1 (5.01.2021): 102. http://dx.doi.org/10.3390/math9010102.

Pełny tekst źródła
Streszczenie:
Symmetric varieties are normal equivarient open embeddings of symmetric homogeneous spaces, and they are interesting examples of spherical varieties. We prove that all smooth Fano symmetric varieties with Picard number one admit Kähler–Einstein metrics by using a combinatorial criterion for K-stability of Fano spherical varieties obtained by Delcroix. For this purpose, we present their algebraic moment polytopes and compute the barycenter of each moment polytope with respect to the Duistermaat–Heckman measure.
Style APA, Harvard, Vancouver, ISO itp.
14

Yu, Chenglong, i Zhiwei Zheng. "Moduli spaces of symmetric cubic fourfolds and locally symmetric varieties". Algebra & Number Theory 14, nr 10 (19.11.2020): 2647–83. http://dx.doi.org/10.2140/ant.2020.14.2647.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Can, Mahir Bilen, Michael Joyce i Benjamin Wyser. "Wonderful symmetric varieties and Schubert polynomials". Ars Mathematica Contemporanea 15, nr 2 (11.09.2018): 523–42. http://dx.doi.org/10.26493/1855-3974.1062.ba8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Pate, Thomas H. "Algebraic varieties in the symmetric algebra". Linear and Multilinear Algebra 20, nr 1 (listopad 1986): 63–74. http://dx.doi.org/10.1080/03081088608817742.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

PANYUSHEV, DMITRI, i OKSANA YAKIMOVA. "Symmetric pairs and associated commuting varieties". Mathematical Proceedings of the Cambridge Philosophical Society 143, nr 2 (wrzesień 2007): 307–21. http://dx.doi.org/10.1017/s0305004107000473.

Pełny tekst źródła
Streszczenie:
AbstractLet $\g=\g_0\oplus\g_1$ be a $\mathbb Z_2$-grading of a simple Lie algebra $\g$. The commuting variety associated with such a grading is the variety of pairs of commuting elements from $\g_1$. We study the problem of irreducibility of these varieties. Using invariant-theoretic technique, we present new instances of reducible and irreducible commuting varieties.
Style APA, Harvard, Vancouver, ISO itp.
18

Sankaran, G. K. "Fundamental group of locally symmetric varieties". Manuscripta Mathematica 90, nr 1 (grudzień 1996): 39–48. http://dx.doi.org/10.1007/bf02568292.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Strickland, Elisabetta. "Equivariant betti numbers for symmetric varieties". Journal of Algebra 145, nr 1 (styczeń 1992): 120–27. http://dx.doi.org/10.1016/0021-8693(92)90180-t.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Kollár, János. "Symmetric powers of Severi–Brauer varieties". Annales de la faculté des sciences de Toulouse Mathématiques 27, nr 4 (2018): 849–62. http://dx.doi.org/10.5802/afst.1584.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Maffei, Andrea, i Rocco Chiriv�. "Projective normality of complete symmetric varieties". Duke Mathematical Journal 122, nr 1 (marzec 2004): 93–123. http://dx.doi.org/10.1215/s0012-7094-04-12213-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Pumplün, Susanne. "Symmetric composition algebras over algebraic varieties". manuscripta mathematica 132, nr 3-4 (22.02.2010): 307–33. http://dx.doi.org/10.1007/s00229-010-0348-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Buch, Anders Skovsted. "Stanley Symmetric Functions and Quiver Varieties". Journal of Algebra 235, nr 1 (styczeń 2001): 243–60. http://dx.doi.org/10.1006/jabr.2000.8478.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Akhiezer, D. N., i E. B. Vinberg. "Weakly symmetric spaces and spherical varieties". Transformation Groups 4, nr 1 (marzec 1999): 3–24. http://dx.doi.org/10.1007/bf01236659.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Kinser, Ryan, i Jenna Rajchgot. "Type D quiver representation varieties, double Grassmannians, and symmetric varieties". Advances in Mathematics 376 (styczeń 2021): 107454. http://dx.doi.org/10.1016/j.aim.2020.107454.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

AVAN, J., J.-M. MAILLARD, M. TALON i C. VIALLET. "ALGEBRAIC VARIETIES FOR THE CHIRAL POTTS MODEL". International Journal of Modern Physics B 04, nr 10 (sierpień 1990): 1743–62. http://dx.doi.org/10.1142/s0217979290000875.

Pełny tekst źródła
Streszczenie:
We describe the symmetries of the chiral checkerboard Potts model (duality, inversion relation, …) and write down the algebraic variety corresponding to the integrable case advocated by Baxter, Perk, Au-Yang. We examine some of its subvarieties, in different limits and for various lattices, with a special emphasis on q=3. This yields for q=3, a new algebraic variety where the standard scalar checkerboard Potts model is solvable. By a comparative analysis of the parametrization of the integrable four-state chiral Potts model and the one of the symmetric Ashkin-Teller model, we bring to light algebraic subvarieties for the q-state chiral Potts model which are invariant under the symmetries of the model. We recover in this manner the Fateev-Zamolodchikov points.
Style APA, Harvard, Vancouver, ISO itp.
27

Chajda, Ivan. "Varieties with modular and distributive lattices of symmetric or reflexive relations". Czechoslovak Mathematical Journal 42, nr 4 (1992): 623–30. http://dx.doi.org/10.21136/cmj.1992.128357.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Chirivì, Rocco, Corrado De Concini i Andrea Maffei. "On normality of cones over symmetric varieties". Tohoku Mathematical Journal 58, nr 4 (grudzień 2006): 599–616. http://dx.doi.org/10.2748/tmj/1170347692.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Hemmer, David J., i Daniel K. Nakano. "Support varieties for modules over symmetric groups". Journal of Algebra 254, nr 2 (sierpień 2002): 422–40. http://dx.doi.org/10.1016/s0021-8693(02)00104-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Casagrande, Cinzia. "Centrally symmetric generators in toric Fano varieties". manuscripta mathematica 111, nr 4 (1.08.2003): 471–85. http://dx.doi.org/10.1007/s00229-003-0374-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Maffei, Andrea. "Orbits in Degenerate Compactifications of Symmetric Varieties". Transformation Groups 14, nr 1 (20.11.2008): 183–94. http://dx.doi.org/10.1007/s00031-008-9040-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Süß, Hendrik. "Kähler–Einstein metrics on symmetric FanoT-varieties". Advances in Mathematics 246 (październik 2013): 100–113. http://dx.doi.org/10.1016/j.aim.2013.06.023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Gagliardi, Giuliano, i Johannes Hofscheier. "The generalized Mukai conjecture for symmetric varieties". Transactions of the American Mathematical Society 369, nr 4 (2.05.2016): 2615–49. http://dx.doi.org/10.1090/tran/6738.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Fan, Zhaobing, Chun-Ju Lai, Yiqiang Li, Li Luo i Weiqiang Wang. "Affine flag varieties and quantum symmetric pairs". Memoirs of the American Mathematical Society 265, nr 1285 (maj 2020): 0. http://dx.doi.org/10.1090/memo/1285.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Venkataramana, T. N. "On Cycles on Compact Locally Symmetric Varieties". Monatshefte f?r Mathematik 135, nr 3 (1.04.2002): 221–44. http://dx.doi.org/10.1007/s006050200018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Ruzzi, Alessandro. "Projective normality of complete toroidal symmetric varieties". Journal of Algebra 318, nr 1 (grudzień 2007): 302–22. http://dx.doi.org/10.1016/j.jalgebra.2007.07.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Franz, Matthias. "Symmetric Products of Equivariantly Formal Spaces". Canadian Mathematical Bulletin 61, nr 2 (1.06.2018): 272–81. http://dx.doi.org/10.4153/cmb-2017-032-0.

Pełny tekst źródła
Streszczenie:
AbstractLet X be a CW complex with a continuous action of a topological group G. We show that if X is equivariantly formal for singular cohomology with coefficients in some field , then so are all symmetric products of X and in fact all its Γ-products. In particular, symmetric products of quasi-projective M-varieties are again M-varieties. This generalizes a result by Biswas and D’Mello about symmetric products of M-curves. We also discuss several related questions.
Style APA, Harvard, Vancouver, ISO itp.
38

Jones, Oliver. "On the geometry of varieties of invertible symmetric and skew-symmetric matrices". Pacific Journal of Mathematics 180, nr 1 (1.09.1997): 89–100. http://dx.doi.org/10.2140/pjm.1997.180.89.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

RUZZI, ALESSANDRO. "SMOOTH PROJECTIVE SYMMETRIC VARIETIES WITH PICARD NUMBER ONE". International Journal of Mathematics 22, nr 02 (luty 2011): 145–77. http://dx.doi.org/10.1142/s0129167x11005678.

Pełny tekst źródła
Streszczenie:
We classify the smooth projective symmetric G-varieties with Picard number one (and G semisimple). Moreover, we prove a criterion for the smoothness of the simple (normal) symmetric varieties whose closed orbit is complete. In particular we prove that, given a such variety X which is not exceptional, then X is smooth if and only if an appropriate toric variety contained in X is smooth.
Style APA, Harvard, Vancouver, ISO itp.
40

Casarotti, Alex, Alex Massarenti i Massimiliano Mella. "On Comon’s and Strassen’s Conjectures". Mathematics 6, nr 11 (25.10.2018): 217. http://dx.doi.org/10.3390/math6110217.

Pełny tekst źródła
Streszczenie:
Comon’s conjecture on the equality of the rank and the symmetric rank of a symmetric tensor, and Strassen’s conjecture on the additivity of the rank of tensors are two of the most challenging and guiding problems in the area of tensor decomposition. We survey the main known results on these conjectures, and, under suitable bounds on the rank, we prove them, building on classical techniques used in the case of symmetric tensors, for mixed tensors. Finally, we improve the bound for Comon’s conjecture given by flattenings by producing new equations for secant varieties of Veronese and Segre varieties.
Style APA, Harvard, Vancouver, ISO itp.
41

Boe, Brian D., i Joseph H. G. Fu. "Characteristic Cycles in Hermitian Symmetric Spaces". Canadian Journal of Mathematics 49, nr 3 (1.06.1997): 417–67. http://dx.doi.org/10.4153/cjm-1997-021-7.

Pełny tekst źródła
Streszczenie:
AbstractWe give explicit combinatorial expresssions for the characteristic cycles associated to certain canonical sheaves on Schubert varieties X in the classical Hermitian symmetric spaces: namely the intersection homology sheaves IHX and the constant sheaves ℂX. The three main cases of interest are the Hermitian symmetric spaces for groups of type An (the standard Grassmannian), Cn (the Lagrangian Grassmannian) and Dn. In particular we find that CC(IHX) is irreducible for all Schubert varieties X if and only if the associated Dynkin diagramis simply laced. The result for Schubert varieties in the standard Grassmannian had been established earlier by Bressler, Finkelberg and Lunts, while the computations in the Cn and Dn cases are new.Our approach is to compute CC(ℂX) by a direct geometric method, then to use the combinatorics of the Kazhdan-Lusztig polynomials (simplified for Hermitian symmetric spaces) to compute CC(IHX). The geometric method is based on the fundamental formula where the Xr ↓ X constitute a family of tubes around the variety X. This formula leads at once to an expression for the coefficients of CC(ℂX) as the degrees of certain singular maps between spheres.
Style APA, Harvard, Vancouver, ISO itp.
42

Yohan BRUNEBARBE. "A strong hyperbolicity property of locally symmetric varieties". Annales scientifiques de l'École normale supérieure 53, nr 6 (2020): 1545–60. http://dx.doi.org/10.24033/asens.2453.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Marberg, Eric, i Brendan Pawlowski. "Gröbner geometry for skew-symmetric matrix Schubert varieties". Advances in Mathematics 405 (sierpień 2022): 108488. http://dx.doi.org/10.1016/j.aim.2022.108488.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Browning, T. D., i A. Gorodnik. "Power-free values of polynomials on symmetric varieties". Proceedings of the London Mathematical Society 114, nr 6 (10.03.2017): 1044–80. http://dx.doi.org/10.1112/plms.12030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Gorodnik, Alexander, Hee Oh i Nimish Shah. "Integral points on symmetric varieties and Satake compatifications". American Journal of Mathematics 131, nr 1 (2009): 1–57. http://dx.doi.org/10.1353/ajm.0.0034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Bigeni, Ange, i Evgeny Feigin. "Symmetric Dellac configurations and symplectic/orthogonal flag varieties". Linear Algebra and its Applications 573 (lipiec 2019): 54–79. http://dx.doi.org/10.1016/j.laa.2019.03.015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Beelen, Peter, i Prasant Singh. "Linear codes associated to skew-symmetric determinantal varieties". Finite Fields and Their Applications 58 (lipiec 2019): 32–45. http://dx.doi.org/10.1016/j.ffa.2019.03.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Robles, C., i D. The. "Rigid Schubert varieties in compact Hermitian symmetric spaces". Selecta Mathematica 18, nr 3 (17.01.2012): 717–77. http://dx.doi.org/10.1007/s00029-011-0082-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

TAKAHASHI, NOBUYOSHI. "QUANDLE VARIETIES, GENERALIZED SYMMETRIC SPACES, AND φ-SPACES". Transformation Groups 21, nr 2 (25.11.2015): 555–76. http://dx.doi.org/10.1007/s00031-015-9351-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Richardson, R. W., i T. A. Springer. "Complements to ‘The Bruhat order on symmetric varieties’". Geometriae Dedicata 49, nr 2 (luty 1994): 231–38. http://dx.doi.org/10.1007/bf01610623.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii